• Title/Summary/Keyword: ITS (internal transcribed spacer)

Search Result 643, Processing Time 0.035 seconds

Pink Mold Rot on Unishiu Orange (Citrus unshiu Mac.) Caused by Trichothecium roseum (Pers.) Link ex Gray in Korea (Trichothecium roseum에 의한 감귤 분홍빛열매썩음병 발생)

  • Kwon, Jin-Hyeuk;Kang, Dong-Wan;Choi, Okhee;Shim, Hong-Sik
    • Research in Plant Disease
    • /
    • v.19 no.3
    • /
    • pp.226-228
    • /
    • 2013
  • In 2012, a pink mold rot was observed on unishiu orange (Citrus unshiu Mac.) fruits at the Wholesale Market for Agricultural Products, Jinju, Korea. The symptom on unishiu orange was a water-soaked lesion on the surface of fruit, which later on enlarged to form softened brown rot lesions. The diseased fruits were covered with pink-colored mold, consisting of conidia and conidiophores of the pathogen. Optimum temperature for mycelial growth was $25^{\circ}C$. Conidia were hyaline, smooth, 2-celled, and thick-walled conidia with truncate bases, ellipsoidal to pyriform, characteristically held together zig-zag chains and $12-26{\times}8-12{\mu}m$ in size. Conidiophore was erect, colorless, unbranched, and 4-5 ${\mu}m$ wide. On the basis of mycological characteristics, pathogenicity test, and molecular analysis with complete ITS rDNA region, the causal fungus was identified as Trichothecium roseum (Pers.) Link ex Gray. This is the first report of pink mold rot caused by T. roseum on unishiu orange in Korea.

Plant growth-promoting activity and identification of endophytic fungi isolated from native plant in East coast (동해안 자생식물로부터 분리된 내생균류의 식물생장촉진활성 및 동정)

  • You, Young-Hyun;Jin, Yong Ju;Kang, Sang-Mo;Oh, Sejong;Lee, Myung-Chul;Kim, Jong-Guk
    • Korean Journal of Microbiology
    • /
    • v.51 no.1
    • /
    • pp.14-20
    • /
    • 2015
  • Coastal plant species, Plantago camtschatica Cham. native to the coastal region of the East Sea were sampled and then morphologically different 20 endophytic fungal strains were purely isolated. Phylogenetic analysis of isolates was done by the Bayesian program based on sequenced internal transcribed spacer (ITS-rDNA) region. Culture filtrates of each of 20 isolates were treated to Waito-c rice (WR) seedlings for verifying plant growth-promoting activity, respectively. As the results, E/PC/10/1 strain showed the highest plant growth-promoting activity among them. The culture filtrate of the strain E/PC/10/1 was revealed as containing gibberellins ($GA_1$, $GA_3$, $GA_4$) by using HPLC, and gas GC/MS with selected ion monitoring (SIM). Finally, this strain was identified as novel Penicillium spinulosum species that producing new GAs with microscopic observation and further molecular analysis with beta-tubulin gene sequence.

Current status of anisakid nematode larvae infection in marine fishes caught from the coastal area of Korea between 2010 and 2012 (2010~2012년 연안에서 서식하는 해산어에서 아니사키스 유충의 감염현황)

  • Kim, Wi-Sik;Jeon, Chan-Hyeok;Kim, Jeong-Ho;Kim, Do-Hyung;Oh, Myung-Joo
    • Journal of fish pathology
    • /
    • v.25 no.3
    • /
    • pp.189-197
    • /
    • 2012
  • A survey was conducted to investigate infection of anisakid nematode larvae in 243 wild marine fishes caught from the southern coastal area of Korea between 2010 and 2012. The samples comprised fishes from 9 orders, 30 families and 50 species. Total infection rate of anisakid nematode larvae was 10.7% (26/243 fish), which comprised from Yeosu, 7.4% (7/95) in 2010 and 22.7% (5/22) in 2011; from Jeju, 8.2% (5/61) in 2011; from Wando, 40.9% (9/22) in 2012. Anisakid nematode larvae were not detected in Tongyoung and Wando samples in 2011. Molecular identification of the 89 worms from 26 fish was conducted by PCR-RFLP and/or sequence analysis of internal transcribed spacer (ITS) region of ribosomal DNA. From the results, 6 kinds of anisakis species were identified: Anisakis pegreffii (infection rate: 53.9%, 48/89 worms), Hysterothylacium aduncum (38.2%, 34/89), H. fabri (3.4%, 3/89), hybird (A. simplex X A. pegreffii) (2.4%, 2/89), A. simplex (1.1%, 1/89) and Raphidascaris lophii (1.1%, 1/89). The rate of single infection was 80.8% (21/26 infected fish), while 19.2% (5/26) showed mixed infection with 2 to 3 different anisakis species.

Identification and Chemical Control of Gray Snow Molds Caused by Typhula spp. on Golf Course in Korea (우리나라의 골프코스에서 Typhula spp.에 의해 발생하는 설부병의 동정 및 방제)

  • Kim, Jeong-Ho;Shim, Gyu-Yul;Lee, Hye-Min;Moon, Hyo-Sun;Kim, Young-Ho
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.2
    • /
    • pp.147-154
    • /
    • 2007
  • In March of 2004, gray snow mold (Typhula blight) caused by Typhula spp. occurred on perennial ryegrass (Lolium perenne L.) and Kentucky bluegrass (Poo pratensis L.) at MuJu golf courses in Jeonbuk Province. Leaves in the affected areas were matted together and frequently covered with white to grayish mycelia. Sclerotia were formed on the leaf blade, leaf sheath, or crown regions. The fungus isolated from the diseased leaf formed whitish mycelium, clamp connections, and light pink to brown, irregular-shaped small sclerotia of less than 1.4 mm in diameter, which are characteristic to Typhula incarnata. Optimum temperature ranges for mycelial growth were $5^{\circ}C$ to $15^{\circ}C$. The causal organism was confirmed to be T. incarnata as the partial sequence of its ribosomal RNA ITS1 (internal transcribed spacer) region was 91% homologous to those of T. incarnata in GenBank database. Out of the 14 fungicides tested fur antifungal activity in vitro, 10 fungicides including iprodione, tebuconazole, polyoxin D, flutolanil, hexaconazole, tolclofos-methyl, fosetyl-Al, mepronil, pencycuron+tebuconazole, and fenarimol completely inhibited fungal growth at their recommended concentrations. In the field test, these fungicides and others such as thifluzamide and thiram effectively controlled the gray snow mold of turfgrass with some variable degrees of control efficacies.

Growth promotion and root development of Nicotiana tabacum L. by plant growth promoting fungi (PGPF) (식물 생장 촉진 진균에 의한 담배의 생장 촉진과 뿌리 발달)

  • Hong, Eunhye;Lee, Jinok;Kim, Sujung;Nie, Hualin;Kim, Young-Nam;Kim, Jiseong;Kim, Sunhyung
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.337-344
    • /
    • 2020
  • Plant growth-promoting microorganisms promote plant growth by supplying nutrients to roots and interacting with the intrinsic factors in plants through volatile organic compounds (VOCs). In this study, we evaluated the effect of UOS, plant growth-promoting fungi (PGPF) isolated from previous study, on the growth of Nicotiana tabacum L. var Xanthi nc. Phylogenetic analysis and GC-MS were used to identify the fungal species and the VOCs emitted by the UOS, respectively. The fresh weight of UOS-treated Nicotiana tabacum L. was 3.8 and 4.2-fold higher than that of the control groups grown in vertical and I-plates, respectively. Moreover, in the UOS-treated plants, the length of the primary root was half and the number of lateral roots were twice compared to those in control plants. The UOS was identified as Phoma sp. by studying spore and mycelial morphology and using phylogenetic analysis. GC-MS revealed that the VOC emitted by the UOS was hexamethylcyclotrisiloxane (D3). These results suggest that the UOS of Phoma sp. influences plant growth and root development through D3. We expect this UOS and its VOC, D3 to be utilized in the future to increase growth and enhance yield for other plants.

Production of a New Biosurfactant by a New Yeast Species Isolated from Prunus mume Sieb. et Zucc.

  • Jeong-Seon Kim;Miran Lee;Dae-Won Ki;Soon-Wo Kwon;Young-Joon Ko;Jong-Shik Kim;Bong-Sik Yun;Soo-Jin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1023-1029
    • /
    • 2023
  • Biosurfactants reduce surface and interfacial tension due to their amphiphilic properties and are an eco-friendly alternative for chemical surfactants. In this study, a new yeast strain JAF-11 that produces a biosurfactant was selected using drop collapse method, and the properties of the extracts were investigated. The nucleotide sequences of the strain were compared with closely related strains and identified based on the D1/D2 domain of the large subunit ribosomal DNA (LSU) and internal transcribed spacer (ITS) regions. Neodothiora populina CPC 39399T, the closest species with strain JAF-11, showed a sequence similarity of 97.75% for LSU and 94.27% for ITS, respectively. The result suggests that the strain JAF-11 represents a distinct species that cannot be assigned to any existing genus or species in the family Dothideaceae. Strain JAF-11 produced a biosurfactant reducing the surface tension of water from 72 mN/m to 34.5 mN/m on the sixth day of culture and the result of measuring the critical micelle concentration (CMC) by extracting the crude biosurfactant was found to be 24 mg/l. The molecular weight 502 of the purified biosurfactant was confirmed by measuring the fast atom bombardment mass spectrum. The chemical structure was analyzed by measuring 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional NMRs of the compound. The molecular formula was C26H46O9, and it was composed of one octanoyl group and two hexanoyl groups to myo-inositol moiety. The new biosurfactant is the first report of a compound produced by a new yeast strain, JAF-11.

Rhizopus Soft Rot on Lily Caused by Rhizopus oryzae in Korea (Rhizopus oryzae에 의한 백합 무름병)

  • Hahm, Soo-Sang;Hong, Gye-Wan;Kim, Byung-Ryun;Han, Kwangseop;Choi, Takyong;Nam, Yungyu;Yu, Seunghun
    • Research in Plant Disease
    • /
    • v.20 no.1
    • /
    • pp.50-53
    • /
    • 2014
  • Rhizopus soft rot of lily (Lilium longiflorum) caused by Rhizopus oryzae was observed in the experimental field in Taean Lily Experiment Station in Korea, 2012. The typical symptoms were water-soaked lesions on bottom stem and leaf rot. The lesion rapidly expanded and the plant was softened totally. The fungus grew vigorously at an optimum temperature ($25^{\circ}C$) and brownish colony and black sporangia were formed on potato dextrose agar medium. Sporangiophores formed on end of sporangia were sub-globose, brownish and $6-10{\mu}m$ in size. Sporangia were globose, blackish and $87-116{\mu}m$ in size. Sporangiospores were irregularly oval and sub-globose, brownish $4-8{\mu}m$ in size. On the basis of mycological characteristics, analyzing sequences of internal transcribed spacer region of ribosomal DNA, and pathogenicity test on host plants, the causal fungus was identified as R. oryzae. This is the first report of Rhizopus soft rot on lily caused by R. oryzae in Korea.

Occurrence of Bunch Rot Disease Caused by Aspergillus tubingensis on Shine Muscat Grape (Aspergillus tubingensis에 의한 샤인머스켓 포도송이썩음병(가칭)의 발생)

  • Kim, Young Soo;Kwon, Hyeok Tae;Hong, Seung-Beom;Jeon, Yongho
    • Research in Plant Disease
    • /
    • v.25 no.4
    • /
    • pp.220-225
    • /
    • 2019
  • During the year 2018, the symptoms of bunch rot on Shine Muscat (Vitis vinifera L.) were observed in Kimcheon-si, Gyeongbuk province in Korea. The disease appears on the Shine Muscat as a black rot due to prolific fungal sporulation after it has invaded into the Shine Muscat which look completely empty and dryness. Colonies of these fungi are present on the Shine Muscat skin from fruit setting and increase in amount from early season to harvest, while become peak at ripening stage. To isolate the causal agent, small fragments (2 to 3 mm) of decayed tissue from the lesion margin were placed onto potato dextrose agar (PDA) plates. Fungal colonies on PDA produced dense white aerial mycelium and then covered with dark black conidial heads. These heads were large and radiate, and vesicles were globose (2.12-32.0×2.0-3.1 ㎛). Based on morphological and cultural characteristics, this fungus was identified as Aspergillus tubingensis. To confirm its identity, the internal transcribed spacer, β-tubulin, and RNA polymerase II was sequenced for molecular identification. BLAST search indicated 99% identity with A. tubingensis. The pathogenicity test on healthy grape of Shine Muscat produced bunch rot, as the original symptoms. To select effective fungicides for the control of brunch rot, an in vitro antifungal activity of seven fungicides were evaluated against the growth of A. tubingensis. Five fungicides (dipenoconazole, tebuconazole, metconazole, iminoctadine, and captan) exhibited significantly strong suppression of the mycelial growth of A. tubingensis.

First Report of Fusarium Wilt Caused by Fusarium oxysporum on Kohlrabi in Korea (Fusarium oxysporum에 의한 콜라비 시들음병)

  • Choi, In-Young;Kim, Ju;Ju, Ho-Jong;Park, Ji-Hyun;Shin, Hyeon-Dong
    • Research in Plant Disease
    • /
    • v.21 no.1
    • /
    • pp.27-31
    • /
    • 2015
  • In April 2014, Fusarium wilt was found on kohlrabi seedlings in Iksan, Korea. Symptoms included wilting of foliage, drying and withering of older leaves, and stunting of the plants. The infected plants eventually died during growth. Colonies on potato dextrose agar were pinkish white, and felted with cottony and aerial mycelium. Macroconidia were falcate to almost straight, thin walled and usually 3-septate. Microconidia were usually formed abundantly in false-heads on short monophialides on the hyphae and were hyaline, smooth, oval to ellipsoidal, aseptate or medianly 1-septate, very occasionally 2-septate, slightly constricted at the septa, $4-11{\times}2.5-5{\mu}m$. On the basis of the morphological characteristics and phylogenetic analyses of molecular markers (internal transcribed spacer rDNA and translation elongation factor $1{\alpha}$), the fungus was identified as Fusarium oxysporum. Pathogenicity of a representative isolate was proved by artificial inoculation, fulfilling Koch's postulates. To our knowledge, this is the first report on the occurrence of Fusarium oxysporum on kohlrabi in Korea.

Diversity of Endophytic Fungal Strains from Jeju Aquatic Plants (제주 수생식물에서 분리한 내생균류의 다양성)

  • Oh, Yoosun;Mun, Hye Yeon;Goh, Jaeduk;Chung, Namil
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.661-672
    • /
    • 2017
  • Endophytic fungi are present in host plants and contribute to resistance to biotic and abiotic stress. Aquatic plants are living in aquatic environment such as saltwater or freshwater and exposed more water stress than other land plants. In this study, we investigated 4 wetlands in Jeju and collected 11 aquatic plants. Exogenous microbes were removed by preprocessing of plants and endophytic fungal strains were isolated from the plants. We isolated 126 fungal strains from Namsaengi-pond, 22 fungal strains from Sujangdong-marsh, 44 fungal strains from Yongsu-reservoir and 32 fungal strains from Gangjeongcheon. The fungal strains were identified using internal transcribed spacer (ITS) region and analyzed the phylogeny and diversity. Endophytic fungi isolated from plants of Namsaengi-pond were classified to 30 genera, 19 families, 12 orders, 7 classes and 4 phyla. Endophytic fungi of Sujangdong-marsh were classified to 11 genera, 11 families, 6 orders, 5 classes and 4 phyla. Endophytic fungi of Yongsu-reservoir were classified to 13 genera, 12 families, 7 orders, 5 classes and 4 phyla. Endophytic fungi isolated from Gangjeongcheon were classified to 9 genera, 7 families, 5 orders, 2 classes and 1 phyla. Overall, they were divided 40 genera and Alternaria, Colletotrichum and Fusarium were isolated from 4 sites in common. By investigating the endophytic fungi in aquatic plants, it is for baseline data that determination of diversity and the ecological distribution of endophytic fungi.