• Title/Summary/Keyword: ITO thickness

Search Result 342, Processing Time 0.027 seconds

CdS 박막제작 및 그 특성(발광 및 수광 소자 응용을 위한에 II-VI족 화합물 반도체들의 접착에 관한 기초연구) (Growth and Properties of CdS Thin films(A Study on the adhesion of II-VI compound semiconductor for applications in light emitting and absorbing devices))

  • Kang, Hyun-Shik;Cho, Ji-Eun;Kim, Kyung-Wha
    • 태양에너지
    • /
    • 제17권2호
    • /
    • pp.55-66
    • /
    • 1997
  • CdTe/CdS 태양전지 제작에 필요한 다결정 CdS 박막을 ITO 전도 유리기판위에 SSD법, SPD법 및 CBD법 으로 제작하고 열처리 한 후 그 결정구조와 광학적 특성을 조사하였다. 박막은 모두 Wurtzite 구조를 보였고 SSD법과 CBD법의 박막은 $0.5{\mu}m$ 크기의 CdS 입자가 불규칙적으로 형성되어 증착되어 있음을 보였고, $400^{\circ}C$로 진공중에서 열처리 할 때 입자의 크기가 약간 증가하였다. SPD법의 박막은 (002)방향으로 결정이 성장되고 입자의 크기가 $0.1-0.3{\mu}m$ 이었다. 에너지 밴드갭 및 결함 상태를 광학적 흡수, 광 루미니센스, 라만 및 광 열 편기 스펙트럼(PDS) 측정을 통해 조사하였다.

  • PDF

Multi-component $ZnO-In_2O_3-SnO_2$ thin films deposited by RF magnetron co-sputtering

  • Lee, Byoung-Hoon;Hur, Jae-Sung;Back, Sang-Yul;Lee, Jeong-Seop;Song, Jung-Bin;Son, Chang-Sik;Choi, In-Hoon
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2006년도 추계학술대회 발표 논문집
    • /
    • pp.68-71
    • /
    • 2006
  • Multi-component $ZnO-In_2O_3-SnO_2$ thin films have been prepared by RF magnetron co-sputtering using targets composed of $In_3Sn_4O_{12}$(99.99%) [1] and ZnO(99.99%) at room temperature. $In_3Sn_4O_{12}$ contains less In than commercial ITO, so that it lowers cost. Working pressure was held at 3 mtorr flowing Ar gas 20 sccm and sputtering time was 30 min. RF power ratio [RF1 / (RFI + RF2)] of two guns in sputtering system was varied from 0 to 1. Each RF power was varied $0{\sim}100W$ respectively. The thickness of the films was $350{\sim}650nm$. The composit ion concentrations of the each film were measured with EPMA, AES and XPS. The low resistivity of $1-2\;{\times}\;10^3$ and an average transmittance above 80% in the visible range were attained for the films over a range of ${\delta}\;(0.3\;{\leq}\;{\delta}\;{\leq}\;0.5)$. The films also showed a high chemical stability with time and a good uniformity.

  • PDF

저온에서 Hydropolymer를 이용한 ZnO 나노입자 염료 감응형 태양전지 (ZnO Nanoparticle Based Dye-Sensitized Solar Cells Devices Fabricated Utilizing Hydropolymer at Low Temperature)

  • 권병욱;손동익;박동희;양정도;최원국
    • 한국재료학회지
    • /
    • 제20권9호
    • /
    • pp.483-487
    • /
    • 2010
  • To fabricate $TiO_2$ nanoparticle-based dye sensitized solar cells (DSSCs) at a low-temperature, DSSCs were fabricated using hydropolymer and ZnO nanoparticles composites for the electron transport layer around a low-temperature ($200^{\circ}C$). ZnO nanoparticle with 20 nm and 60 nm diameter were used and Pt was deposited as a counter electrode on ITO/glass using an RF magnetron sputtering. We investigate the effect of ZnO nanoparticle concentration in hydropolymer and ZnO nanoparticle solution on the photoconversion performance of the low temperature fabricated ($200^{\circ}C$) DSSCs. Using cis-bis(isothiocyanato)bis(2,20 bipyridy1-4,40 dicarboxylato) ruthenium (II) bis-tetrabutylammonium (N719) dye as a sensitizer, the corresponding device performance and photo-physical characteristics are investigated through conventional physical characterization techniques. The effect of thickness of the ZnO photoelectrode and the morphology of the ZnO nanoparticles with the variations of hydropolymer to ZnO ratio on the photoconversion performance are also investigated. The morphology of the ZnO layer after sintering was examined using a field emission scanning electron microscope (FE-SEM). 60 nm ZnO nanoparticle DSSCs showed an incident photon-to-current conversion efficiency (IPCE) value of about 7% higher than that of 20 nm ZnO nanoparticle DSSCs. The maximum parameters of the short circuit current density ($J_{sc}$), the open circuit potential ($V_{oc}$), fill factor (ff), and efficiency ($\eta$) in the 60 nm ZnO nanoparticle-based DSSC devices were 4.93 mA/$cm^2$, 0.56V, 0.40, and 1.12%, respectively.

Europium complex를 이용한 유기 전기 발광 소자의 전기적 및 광학적 특성에 관한 연구 (A Studies on the Electrical and Optical Characterization of Organic Electroluminescent Devices using $Eu(TTA)_3(phen)$)

  • 이명호;표상우;이한성;김영관;김정수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1373-1376
    • /
    • 1998
  • Electroluminescent(EL) devices based on organic materials have been of great interest due to their possible applications for large-area flat-panel displays. They are attractive because of their capability of multicolor emission, and low operation voltage. In this study, glass substrate/ITO/TPD/$Eu(TTA)_3(phen)/Alq_3/Al$ structures were fabricated by evaporation method, where aromatic diamine(TPD) were used as a hole transporting material, $Eu(TTA)_3(phen)$ as an emitting material, and tris(8-hydroxyquinoline)Aluminum ($Alq_3$) as an electron transporting layer. Electroluminescent(EL) and I-V characteristics of $Eu(TTA)_3(phen)$ with a variety thickness was investigated. This structure shows the red EL spectrum, which is almost the same as the PL spectrum of $Eu(TTA)_3(phen)$. I-V characteristics of this structure show that turn-on voltage was 9V and current density of $0.01A/cm^2$ at a dc drive voltage of 9V. Details on the explanation of electrical transport phenomena of these structures with I-V characteristics using the trapped-charge-limited current model will be discussed.

  • PDF

EFFECT OF DEPOSITION METHODS ON PHYSICAL PROPERTIES OF POLYCRYSTALLINE CdS

  • Lee, Y.H.;Cho, Y.A.;Kwon, Y.S.;Yeom, G.Y.;Shin, S.H.;Park, K.J.
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.862-868
    • /
    • 1996
  • Cadmium sulfide is commonly used as the window material for thin film solar cells, and can be prepared by several techniques such as sputtering, spray pyrolysis, close spaced sublimation (CSS), thermal evaporation, solution growth methods, etc. In this study, CdS films were deposited by thermal evaporation, close spaced sublimation, and solution growth methods, respectively, and the effects of the methods on physical properties of polycrystalline CdS deposited on ITO/glass were investigated. Also, the effects of variously prepared CdS thin films on the physical properties of CdTe deposited on the CdS were investigated. The thickness of polycrystalline CdS films was maintained at $0.3\mu\textrm{m}$ except for the solution grown CdS when $0.2\mu\textrm{m}$ thick CdS was deposited. After the deposition, all the samples were annealed at $400^{\circ}C$ or $500^{\circ}C$ in H2 atmosphere. To investigate physical properties of the deposited and annealed CdS thin films, UV-VIS spectro-photometry, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES), and cross sectional transmission electron microscopy(XTEM) were used to analyze grain size, crystal structure, preferred orientation, optical properties, etc. The annealed CdS showed the bandedge transition at 510nm and the optical transmittance high than 80% for all of the variously deposited films. XRD results showed that CdS thin films variously deposited and annealed had the same hexagonal structures, however, showed different preferred orientations. CSS grown CdS had [103] preferred orientation, thermally evaporated CdS had [002], and CdS grown by the solution growth had no preferred orientation. The largest grain size was obtained for the CSS grown CdS while the least grain size was obtained for the solution grown CdS. Some of the physical properties of CdTe deposited on the CdS thin film such as grain size at the junction and grain orientation were affected by the physical properties of CdS thin films.

  • PDF

Crucible Boat 홀 크기와 정공 수송층 증착속도에 따른 유기밭광 다이오드의 전기적 특성 (Electrical Properties of OLEDs due to the Hole-size of Crucible Boat and Deposition Rate of Hole Transport Layer)

  • 김원종;신현택;신종열;홍진웅
    • 한국전기전자재료학회논문지
    • /
    • 제22권1호
    • /
    • pp.74-80
    • /
    • 2009
  • In the structure of ITO/N,N'-diphenyl-N,N' bis (3-methylphenyl)-1,1'-biphenyl-4,4'-diamine(TPD)/tris (8-hydroxyquinoline)aluminum($Alq_3$)/Al device, we studied the efficiency improvement of organic light-emitting diodes due to variation of deposition rate of hole transport layer (TPD) materials using hole-size of crucible boat. The thickness of TPD and $Alq_3$ was manufactured 40 nm, 60 nm, respectively under a base pressure of $5{\times}10^{-6}$ Torr using a thermal evaporation. The $Alq_3$ used for an electron-transport and emissive layer were evaporated to be at a deposition rate of $2.5\;{\AA}/s$. When the deposition rate of TPD increased from 1.5 to $3.0\;{\AA}/s$, we studied the efficiency improvement of TPD using the hole-size of crucible is 1.0 mm. When the deposition rate of TPD is $2.5\;{\AA}/s$, we found that the average roughness is rather smoother, the luminous efficiency the external quantum efficiency is superior to the others. Compared to the two from the devices made with the deposition rate of TPD is $2.0\;{\AA}/s$ and $3.0\;{\AA}/s$, the external quantum efficiency was improved by four-times and two-times, respectively.

Electrical Characteristics of Organic Light-emitting Diodes Fabricated by Varying a Hole-size in Evaporation Boat

  • Kim, Weon-Jong;Park, Young-Ha;Cho, Kyung-Soon;Hong, Jin-Woong;Shin, Jong-Yeol;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권3호
    • /
    • pp.105-109
    • /
    • 2008
  • Electrical characteristics of organic light-emitting diodes were investigated by varying a hole-size in evaporation boat in the device structure of ITO/tris(8-hydroxyquinoline) aluminum$(Alq_3)$/Al. The device was manufactured using a thermal evaporation under a base pressure of $5{\times}10^{-6}$ Torr. The $Alq_3$ emitting organics were evaporated to be a thickness of 100 nm at a deposition rate of $1.5{\AA}/s$. A cylindrical-shaped evaporation boat was made out of stainless steel with a small size of hole on top of the boat. Several evaporation boats were made having a different hole size on top; 0.8 mm, 1.0 mm, 1.5 mm, and 3.0 mm. We found that when the hole size on top of the evaporation boat is 1.0 mm, the average roughness is rather smoother compared to the other ones. Also, luminance and external quantum efficiency are superior to the others. Compared to the ones from the devices made with the hole-size of 0.8 mm boat. The luminance and external quantum efficiency of the device made with the hole-size of 1.0 mm boat were improved by a factor of seventy and thirty three, respectively. Also operating voltage is reduced to 2 V.

정공 수송층(TPD) 증착 속도에 따른 유기 발광 소자의 전기적 특성 (Electrical Characteristics of OLEDs depending on the Deposition Rate of Hole Transport Layer(TPD))

  • 김원종;이영환;이상교;박희두;조경순;김태완;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.87-88
    • /
    • 2008
  • In the structure of ITO/N,N'-diphenyl-N,N' bis (3-methylphenyl)-1,1'-biphenyl-4,4'-diamine(TPD)/tris (8-hydroxyquinoline)aluminum$(Alq_3)$/Al device, we studied the efficiency improvement of organic light-emitting diodes due to variation of deposition rate of TPD materials. The thickness of TPD and $Alq_3$ was manufactured 40 nm, 60 nm, respectively under a base pressure of $5\times10^{-6}$Torr using a thermal evaporation. The $Alq_3$ used for an electron-transport and emissive layer were evaporated to be at a deposition rate of 2.5 $\AA$/s. When the deposition rate of TPD increased from 1.5 to 3.0 $\AA$/s, we found that the average roughness is rather smoother, external quantum efficiency is superior to the others when the deposition rate of TPD is 2.5 $\AA$/s. Compared to the ones from the devices made with the deposition rate of TPD 3.0 $\AA$/s, the external quantum efficiency was improved by a factor of eight.

  • PDF

전극 변화에 따른 유기 발광 소자의 내장 전압 (Built-in voltage depending on electrode in organic light-emitting diodes)

  • 윤희명;이은혜;이원재;정동회;오용철;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 춘계학술대회 논문집
    • /
    • pp.14-16
    • /
    • 2008
  • Built-in voltage in organic light-emitting diodes was studied using modulated photocurrent technique ambient conditions. From the bias voltage-dependent photocurrent, built-in voltage of the device is determined. The applied bias voltage when the magnitude of modulated photocurrent is zero corresponds to a built-in voltage. Built-in voltage in the device is generated due to a difference of work function of the anode and cathode. A device was made with a structure of anode/$Alq_3$/cathode to study a built-in voltage. ITO was used as an anode, and Al and LiAl were used as a cathode. A layer thickness of Al and LiAl were 100nm. Obtained built-in voltage is about 1.0V in the Al layer was used as a cathode. The obatined built-in voltage is about 1.6V in the LiAl layer was used as a cathode. The result of built-in voltage is dependent of cathode. We can see that the built-in voltage increase up to 0.4V when the LiAl layer was used as the cathode. These results correspond to the work function of LiAl which is lower than that of Al. As a result, the barrier height for an electron injection from the cathode to the organic layer could be lowered when the LiAl was used as a cathode.

  • PDF

Electrical and Optical Study of PLED & OLEDS Structures

  • Mohammed, BOUANATI Sidi;SARI, N. E. CHABANE;Selma, MOSTEFA KARA
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권3호
    • /
    • pp.124-129
    • /
    • 2015
  • Organic electronics are the domain in which the components and circuits are made of organic materials. This new electronics help to realize electronic and optoelectronic devices on flexible substrates. In recent years, organic materials have replaced conventional semiconductors in many electronic components such as, organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaic (OPVs). It is well known that organic light emitting diodes (OLEDs) have many advantages in comparison with inorganic light-emitting diodes LEDs. These advantages include the low price of manufacturing, large area of electroluminescent display, uniform emission and lower the requirement for power. The aim of this paper is to model polymer LEDs and OLEDs made with small molecules for studying the electrical and optical characteristics. The purpose of this modeling process is, to obtain information about the running of OLEDs, as well as, the injection and charge transport mechanisms. The first simulation structure used in this paper is a mono layer device; typically consisting of the poly (2-methoxy-5(2'-ethyl) hexoxy-phenylenevinylene) (MEH-PPV) polymer sandwiched between an anode with a high work function, usually an indium tin oxide (ITO) substrate, and a cathode with a relatively low work function, such as Al. Electrons will then be injected from the cathode and recombine with electron holes injected from the anode, emitting light. In the second structure, we replaced MEH-PPV by tris (8-hydroxyquinolinato) aluminum (Alq3). This simulation uses, the Poole-Frenkel -like mobility model and the Langevin bimolecular recombination model as the transport and recombination mechanism. These models are enabled in ATLAS- SILVACO. To optimize OLED performance, we propose to change some parameters in this device, such as doping concentration, thickness and electrode materials.