• 제목/요약/키워드: ITO thickness

검색결과 342건 처리시간 0.033초

ALD 공정을 이용한 플렉시블 유기태양전지용 투명전극 형성 (Fabrication of a Transparent Electrode for a Flexible Organic Solar Cell in Atomic Layer Deposition)

  • 송근수;김형태;유경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.121.2-121.2
    • /
    • 2011
  • Aluminum-doped Zinc Oxide (AZO) is considered as an excellent candidate to replace Indium Tin Oxide (ITO), which is widely used as transparent conductive oxide (TCO) for electronic devices such as liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and organic solar cells (OSCs). In the present study, AZO thin film was applied to the transparent electrode of a channel-shaped flexible organic solar cell using a low-temperature selective-area atomic layer deposition (ALD) process. AZO thin films were deposited on Poly-Ethylene-Naphthalate (PEN) substrates with Di-Ethyl-Zinc (DEZ) and Tri-Methyl-Aluminum (TMA) as precursors and $H_2O$ as an oxidant for the atomic layer deposition at the deposition temperature of $130^{\circ}C$. The pulse time of TMA, DEZ and $H_2O$, and purge time were 0.1 second and 20 second, respectively. The electrical and optical properties of the AZO films were characterized as a function of film thickness. The 300 nm-thick AZO film grown on a PEN substrate exhibited sheet resistance of $87{\Omega}$/square and optical transmittance of 84.3% at a wavelength between 400 and 800 nm.

  • PDF

Influence of the Ag interlayer on the structural, optical, and electrical properties of ZTO/Ag/ ZTO films

  • Gong, Tae-Kyung;Moon, Hyun-Joo;Kim, Daeil
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권2호
    • /
    • pp.121-124
    • /
    • 2016
  • ZnSnO3 (ZTO)/Ag/ ZnSnO3 (ZTO) trilayer films were prepared on glass substrates by radio frequency (RF) and direct current (DC) magnetron sputtering. The electrical resistivity and optical transmittance of the films were investigated as a function of the Ag interlayer thickness. ZTO films with a 15 nm thick Ag interlayer show the highest average visible transmittance (83.2%) in the visible range. In this study, the highest figure of merit (2.1×10−2 Ω cm) is obtained with the ZTO 50 nm/Ag 15 nm/ZTO 50 nm films. The enhanced optical and electrical properties of ZTO films with a 15 nm thick Ag interlayer are attributed to the crystallization of the Ag interlayer, as supported by the distinct XRD pattern of the Ag (111) peaks. From the observed results, higher optical and electrical performance of the ZTO film with a 15 nm thick Ag interlayer seems to make a promising alternative to conventional transparent conductive ITO films.

열분무법으로 제조된 산화아연의 제법과 확인(I) (Preparation and Characterization of Zinc Oxide Prepared by Spray Pyrolysis Method)

  • 진의;김영순
    • 대한화학회지
    • /
    • 제42권6호
    • /
    • pp.638-645
    • /
    • 1998
  • 아세트산아연으로부터 ITO유리전극위에 열분무법을 이용한 산화아연의 박막을 만들고, 박막 표면의 형태는 SEM으로 조사하였다. 산화아연 박막의 두께는 온도를 증가시키면 약 833 nm까지 증가하다가, 480$^{\circ}C$ 부터는 오히려 감소하는 경향을 나타내었다. 분광 흡광도는 365 nm에서 관측되었고 형광 특성은 475 nm, 505 nm에서 최대의 세기를 나타내었다. 산화아연의 생성은 X선 광전자 분광 스펙트럼으로 확인하였으며, X선 회절 무늬로부터 (002) 면이 기질온도에 따라 우세한 방향으로 성장함을 알 수 있었다. 산화아연의 합성 최적의 온도는 X선 회절 무늬와 광전류의 측정값으로부터 460$^{\circ}C$ 부근임을 확인하였다. 또한 산화아연의 입자의 크기가 균일할수록 광전류가 증가함을 알 수 있있다.

  • PDF

졸-겔법에 의한 강유전성 PZT 박막의 제조;(I) 킬레이팅 에이전트를 이용한 안정화 PZT 졸의 합성 및 박막의 제조 (Preparation of Ferroelectric PZT Thin Film by Sol-Gel Processing; (I) Synthesis of Stable PZT Sol Using Chelating Agent and Preparation of Its Thin Film)

  • 김병호;홍권;조홍연
    • 한국세라믹학회지
    • /
    • 제31권7호
    • /
    • pp.804-812
    • /
    • 1994
  • Stable PZT coating sol was prepared using chelating agent, ethylacetoacetate(EAcAc) by sol-gel processing under ambient atmosphere. Through FT-IR spectrum analysis on solution of each reaction step, formation of metal complex was confirmed and prepared PZT sol was stable over several months. Through TG-DTA, XRD, FT-IR spetrum analysis of PZT gel powder, it was understood that the addition of EAcAc could reduce the transition temperature to ferroelectric phase, due to the increased homogeneity by matching the hydrolysis and condensation rates by chelation. Single perovskite phase was obtained by the heat-treatment at 54$0^{\circ}C$ for 30 min. The film was coated on ITO-coated glass substrate by dip coating method. After heat-treatment, PZT thin film had thickness in the range of 20~130 nm. The maximum dielectric constant of its thin film at room temperature and 1 kHz was 128.

  • PDF

Improving performance of deep-blue OLED by inserting ultra-thin LiF between hole-blocking and electron-transporting layers

  • Sun, J.X.;Zhu, X.L.;Yu, X.M.;Wong, M.;Kwok, H.S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.956-960
    • /
    • 2006
  • Deep-blue organic light-emitting diodes (OLEDs) with/without ultra-thin LiF layer inserted at the interface between hole-blocking and electron-transporting layers have been fabricated and investigated. The fundamental structures of the OLEDs are ITO/m-MTDATA/NPB/BCP/LiF (with/ without)/ $Alq_3/LiF/Al.Deep$ blue light emission with CIE coordinate of (0.15, 0.11) has been achieved for all devices. Further, by inserting LiF with thickness of 1nm at the interface between BCP and $Alq_3$ layer, the luminous efficiency as well as the power efficiency is much improved compared to that without. The enhancement of electron injection due to insertion of LiF may account for this improvement.

  • PDF

칼코게나이드 박막의 전기적 펄스에 의한 상변화 연구 (The phase transition with electric field in chalcogenide thin films)

  • 양성준;신경;이재민;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 디스플레이 광소자분야
    • /
    • pp.115-118
    • /
    • 2004
  • The phase transition between amorphous and crystalline states in chalcogenide semiconductor films can controlled by electric pulses or pulsed laser beam; hence some chalcogenide semoconductor films can be applied to electrically write/erase nonvolatile memory devices, where the low conductive amorphous state and the high conductive crystalline stale are assigned to binary states. AST(AsSbTe) used to phase change material by applying electical pulses. Thickness of AST chalcogenide thin film have about 100nm. Electrodes are made of ITO and Al. $T_c$(Crystallization temperature) of AST system is lower than that of the GST(GeSbTe) system, so that the current pulse width of crystallization process can be decreased.

  • PDF

Synthesis and Exploitation in Solar Cells of Hydrothermally Grown ZnO Nanorods Covered by ZnS Quantum Dots

  • Mehrabian, Masood;Afarideh, Hossein;Mirabbaszadeh, Kavoos;Lianshan, Li;Zhiyong, Tang
    • Journal of the Optical Society of Korea
    • /
    • 제18권4호
    • /
    • pp.307-316
    • /
    • 2014
  • Improved power conversion efficiency of hybrid solar cells with ITO/ZnO seed layer/ZnO NRs/ZnS QDs/P3HT/PCBM/Ag structure was obtained by optimizing the growth period of ZnO nanorods (NRs). ZnO NRs were grown using a hydrothermal method on ZnO seed layers, while ZnS quantum dots (QDs) (average thickness about 24 nm) were fabricated on the ZnO NRs by the successive ionic layer adsorption and reaction (SILAR) technique. Morphology, crystalline structure and optical absorption of layers were analyzed by a scanning electron microscope (SEM), X-ray diffraction (XRD) and UV-Visible absorption spectra, respectively. The XRD results implied that ZnS QDs were in the cubic phase (sphalerite). Other experimental results showed that the maximum power conversion efficiency of 4.09% was obtained for a device based on ZnO NR10 under an illumination of one Sun (AM 1.5G, $100mW/cm^2$).

Electrochemical Synthesis of TiO2 Photocatalyst with Anodic Porous Alumina

  • Hattori, Takanori;Fujino, Takayoshi;Ito, Seishiro
    • 한국재료학회지
    • /
    • 제17권11호
    • /
    • pp.593-600
    • /
    • 2007
  • Aluminum was anodized in a $H_2SO_4$ solution, and titanium (IV) oxide ($TiO_2$) was electrodeposited into nanopores of anodic porous alumina in a mixed solution of $TiOSO_4$ and $(COOH)_2$. The photocatalytic activity of the prepared film was analyzed for photodegradation of methylene blue aqueous solution. Consequently, we found it was possible to electrodeposit $TiO_2$ onto anodic porous alumina, and synthesized it into the nanopores by hydrolysis of a titanium complex ion under AC 8-9 V when film thickness was about $15-20{\mu}m$. The photocatalytic activity of $TiO_2$-loaded anodic porous alumina ($TiO_2/Al_2O_3$) at an impressed voltage of 9 V was the highest in every condition, being about 12 times as high as sol-gel $TiO_2$ on anodic porous alumina. The results revealed that anodic porous alumina is effective as a substrate for photocatalytic film and that high-activity $TiO_2$ film can be prepared at low cost.

P3HT:PCBM-based on Polymer Photovoltaic Cells with PEDOT:PSS-pentacene as a Hole Conducting Layer

  • Kim, Hyun-Soo;Hwang, Jong-Won;Park, Su-Jin;Chae, Hyun-Hee;Choe, Young-Son
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.313-313
    • /
    • 2010
  • The performance of polymer photovoltaic cells based on blends of poly(3-hexylyhiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) is strongly influenced by blend composition and thickness. Polymer photovoltaic cells based on bulk-heterojunction have been fabricated with a structure of ITO/poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)-pentacene/poly (3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM)/Al. We have prepared PEDOT:PSS by dissolving pentacene in N-methylpyrrolidine (NMP) and mixing with PEDOT:PSS. Pentacene was added a maximum concentration of approximately 5.5mg to the PEDOT:PSS solution and sonicated for 10 min. Active layer (P3HT:PCBM) (1:1) was strongly influenced by PEDOT:PSS-pentacene. We have investigated the performance of photovoltaic device with different concentration of P3HT:PCBM (1:1) 2.0wt%, 2.2wt%, 2.4wt% and 2.6wt%, respectively. The photocurrent and power conversion efficiency (PCE) showed a maximum between 2.0wt% and 2.2wt% concentration of P3HT:PCBM. This implied that both morphology and electron transport properties of the layer influenced the performance of the present photovoltaic cells. As the concentration of P3HT:PCBM blends as an active layer was increased, the power conversion efficiency was decreased. P3HT:PCBM layer and PEDOT:PSS-pentacene layer were characterized by work function, UV-visible absorption, atomic force microscopy (AFM), X-ray diffraction (XRD) and scanning electron microscope (SEM).

  • PDF

Organic Thin-Film Transistors Fabricated on Flexible Substrate by Using Nanotransfer Molding

  • Hwang, Jae-Kwon;Dang, Jeong-Mi;Sung, Myung-Mo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.287-287
    • /
    • 2010
  • We report a new direct patterning method, called liquid bridge-mediated nanotransfer molding (LB-nTM), for the formation of two- or three-dimensional structures with feature sizes between tens of nanometers and tens of micron over large areas. LB-nTM is based on the direct transfer of various materials from a mold to a substrate via a liquid bridge between them. This procedure can be adopted for automated direct printing machines that generate patterns of functional materials with a wide range of feature sizes on diverse substrates. Arrays of TIPS-PEN TFTs were fabricated on 4" polyethersulfone (PES) substrates by LB-nTM using PDMS molds. An inverted staggered structure was employed in the TFT device fabrication. A 150 nm-thick indium-tin oxide (ITO) gate electrode and a 200 nm-thick SiO2dielectric layer were formed on a PES substrate by sputter deposition. An array of TIPS-PEN patterns (thickness: 60 nm) as active channel layers was fabricated on the substrate by LB-nTM. The nominal channel length of the TIPS-PEN TFT was 10 mm, while the channel width was 135 mm. Finally, the source and drain electrodes of 200 nm-thick Ag were defined on the substrate by LB-nTM. The TIPS-PEN TFTs can endure strenuous bending and are also transparent in the visible range, and therefore potentially useful for flexible and invisible electronics.

  • PDF