• Title/Summary/Keyword: ITO thickness

Search Result 342, Processing Time 0.029 seconds

Equivalent-circuit Analysis of ITO/Alq3/Al Organic Light-emitting Diode

  • Chung, Dong-Hoe;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.131-134
    • /
    • 2007
  • An $ITO/Alq_3/Al$ structure was used to study complex impedance of $Alq_3$ based organic light-emitting diodes. Equivalent circuit was analyzed in a device structure of $ITO/Alq_3/Al$ with a thickness layer of $Alq_3$ of 100 nm. The obtained impedance was able to be fitted using equivalent circuit model of parallel combination of resistance $R_p$ and capacitance $C_p$ with a small series resistance of $R_s$.

Impedance characteristics with various $Alq_3$ thickness in ITO/$Alq_3$/Al organic light-emitting diodes (ITO/$Alq_3$/Al의 유기 발광 소자에서 $Alq_3$의 두께 변화에 따른 임피던스 특성)

  • Gong, Doo-Won;Koo, Ja-Ryong;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.477-478
    • /
    • 2005
  • The devices with a structure of ITO/$Alq_3$/Al were fabricated and their impedance properties were analyzed. It is obtained that an effect of resistance $R_p$ of the device was dominant at the low frequency and the high voltage region, emitting region, and it is ignored at the high frequency region. Capacitance $C_p$ appears intensely in a range of all frequencies of non-emitting region, below turn on voltage.

  • PDF

Indium Tin Oxide Based Reflector for Vertical UV LEDs (자외선 수직형 LED 제작을 위한 Indium Tin Oxide 기반 반사전극)

  • Jung, Ki-Chang;Lee, Inwoo;Jeong, Tak;Baek, Jong Hyeob;Ha, Jun-Seok
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.194-198
    • /
    • 2013
  • In this paper, we studied a p-type reflector based on indium tin oxide (ITO) for vertical-type ultraviolet light-emitting diodes (UV LEDs). We investigated the reflectance properties with different deposition methods. An ITO layer with a thickness of 50 nm was deposited by two different methods, sputtering and e-beam evaporation. From the measurement of the optical reflection, we obtained 70% reflectance at a wavelength of 382 nm by means of sputtering, while only 30% reflectance resulted when using the e-beam evaporation method. Also, the light output power of a $1mm{\times}1mm$ vertical chip created with the sputtering method recorded a twofold increase over a chip created with e-beam evaporation method. From the measurement of the root mean square (RMS), we obtained a RMS value 1.3 nm for the ITO layer using the sputtering method, while this value was 5.6 nm for the ITO layer when using the e-beam evaporation method. These decreases in the reflectance and light output power when using the e-beam evaporation method are thought to stem from the rough surface morphology of the ITO layer, which leads to diffused reflection and the absorption of light. However, the turn-on voltage and operation voltage of the two samples showed identical results of 2.42 V and 3.5 V, respectively. Given these results, we conclude that the two ITO layers created by different deposition methods showed no differences in the electric properties of the ohmic contact and series resistance.

Fabrication of Indium Tin Oxide (ITO) Transparent Thin Films and Their Microwave Shielding Properties (Indium Tin Oxide (ITO) 투광성 박막의 제조 및 전자파 차폐특성)

  • Kim, Yeong-Sik;Jeon, Yong-Su;Kim, Seong-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1055-1061
    • /
    • 1999
  • Indium Tin Oxide (ITO) films were fabricated by vacuum deposition technique and their microwave shielding properties were investigated for the application to the transparent shield material. The vacuum coating was conducted in a RF co-sputtering machine. The film composition and structure associated with the sputtering conditions (argon and oxygen pressure. substrate temperature. RF input power) were investigated for the attainment of high electrical conductivity and good transparency. The electrical conductivity of IT0 films fabricated under the optimum deposition conditions (substrate temperature : $300^{\circ}C$. Ar flow rate : 20 sccm, Oxygen flow rate : 10 sccm, In/Sn input power : 50/30 W) showed 5.6$\times10^4$mho/m. The optical transparency is also considerably good. The microwave shielding properties including the dominant shielding mechanism are investigated from the electrical conductivity, thickness and skin depth of the ITO films. The total shielding effectiveness is then estimated to be 26 dB, which provides a suggestion that the IT0 films can be effectively used as the transparent shield material.

  • PDF

Improvement of Mchanical Property of Indium-tin-oxide Films on Polymer Substrates by using Organic Buffer Layer

  • Park, Sung-Kyu;Han, Jeong-In;Moon, Dae-Gyu;Kim, Won-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.2
    • /
    • pp.32-37
    • /
    • 2002
  • This paper gives the basic mechanical properties of indium-tin-oxide (ITO) films on polymer substrates which are exposed to externally and thermally induced bending force. By using modified Storney formula including triple layer structure and bulge test measuring the conductive changes of patterned ITO islands as a function of bending curvature, the mechanical stability of ITO films on polymer substrates was intensively investigated. The numerical analyses and experimental results show thermally and externally induced mechanical stresses in the films are responsible for the difference of thermal expansion between the ITO film and the substrate, and leer substrate material and its thickness, respectively. Therefore, a gradually ramped heating process and an organic buffer layer were employed to improve the mechanical stability, and then, the effects of the buffer layer were also quantified in terms of conductivity-strain variations. As a result, it is uncovered that a buffer layer is also a critical factor determining the magnitude of mechanical stress and the layer with the Young's modulus lower than a specific value can contribute to relieving the mechanical stress of the films.

Annealing Effects of Indium Tin Oxide films grown on 91ass by radio frequency magnetron sputtering technique

  • Jan M. H.;Choi J. M.;Whang C. N.;Jang H. K.;Yu B. S.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.159-164
    • /
    • 2005
  • Indium tin oxide (ITO) films were deposited on a glass slide at a thickness of 280 nm by radio frequency(rf) magnetron sputtering from a ceramic target composed of $In_2O_3\;(90\%)\;+\;SnO_2\;(10\%)$. We investigated the effects of the annealing temperature (Ta) between 200 and 350'E for 30 min in air on such properties as thermal stability, surface morphology, and crystal structure of the films. X-ray diffraction spectra revealed that all the films were oriented preferably with [222] direction and [440] direction and the peak intensity increased with increasing annealing temperature. X-ray photoelectron spectroscopy (XPS) showed that the sodium was out-diffused from the glass substrate at the annealing temperature of $350^{\circ}C$. The sodium composition of the ITO film amlealed at $350^{\circ}C\;for\;30\;min\;was\;2.5\%$ at the surface. Also the sodium peak almost disappeared after 3 keV $Ar^+$sputtering for 6 min. The visible transmittance of all ITO films was over $77\%$.

Low Temperature Deposition of the $In_2O_3-SnO_2$, $SnO_2$ and $SiO_2$ on the Plastic Substrate by DC Magnetron Sputtering

  • Kim, Jin-Yeol;Kim, Eung-Ryeol;Lee, Jae-Ho;Kim, Soon-Sik
    • Journal of Information Display
    • /
    • v.2 no.1
    • /
    • pp.38-42
    • /
    • 2001
  • Thin films of $In_2O_3-SnO_2$(ITO), $SnO_2$, and $SiO_2$ were prepared on the PET substrate by DC magnetron roll sputtering. 135 nm thick ITO film on $SiO_2$/PET substrate has sheet resistance as low as 55 ${\Omega}/square$ and transmittance as high as 85%. $H_2O$gas permeation through the film was 0.35 g/$m^2$ in a day. These properties are enough on optical film for the plastic LCD substrate or touch panel. Both refractive index and sheet resistance of ITO was found to be very sensitive to $O_2$ flow rate. Oxygen flow conditions have been optimized from 4 to 5 SCCM at $10^{-3}$torr. It is also shown that both thickness of $SnO_2$ and refractive index of $SiO_2$ decrease as $O_2$ flow rate increases.

  • PDF

Electrical Properties of Organic PVA Gate Insulator Film on ITO/Glass Substrates (ITO/glass 기판위에 제작된 Cross linked PVA 유기 게이트 절연막의 전기적 특성)

  • Choi, Jin-Eun;Gong, Su-Cheol;Jeon, Hyeong-Tag;Park, Hyung-Ho;Chang, Ho-Jung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.1-5
    • /
    • 2010
  • The PVA (poly-vinyl alcohol) insulators were spun coated onto ITO coated glass substrates with the capacitors of Glass/ITO/PVA/Al structure. The effects of PVA concentrations (3.0, 4.0 and 5.0 wt%) on the morphology and electrical properties of the films were investigated. As the concentration of PVA increased from 3.0 to 5.0 wt%, the leakage current of device decreased from 17.1 to 0.23 pA. From the AFM measurement, the RMS value decreased with increasing PVA concentration, showing the improvement of insulator film roughness. The capacitances of the films with PVA concentrations of 4.0 and 5.0 wt% were about 28.1 and 24.2 nF, respectively. The lowest leakage current of 1.77 PA was obtained at the film thickness of 117.5 nm for the device with fixed PVA concentration of 5.0 wt%.

Complex Impedance Analysis of $ITO/Alq_3/Al$ device structure (ITO/$Alq_3$/Al 소자 구조의 합성 임피던스 분석)

  • Chung, Dong-Hoe;Kim, Sang-Keol;Lee, Joon-Ung;Jang, Kyung-Uk;Lee, Won-Jae;Song, Min-Jong;Chung, Teak-Gyun;Kim, Tae-Wan;Lee, Ki-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.438-439
    • /
    • 2006
  • We have used ITO/$Alq_3$/Al structure to study complex impedance in $Alq_3$ based organic light emitting diode. Equivalent circuit was analyzed in a device structure of ITO/$Alq_3$/Al by varying the thickness of $Alq_3$ layer from 60 to 400nm. The impedance results can be fitted using equivalent circuit model of parallel combination resistance $R_p$ and capacitance $C_p$ with a small series resistance $R_s$.

  • PDF

Characterization of Cesium Assisted Sputtering Process Using Design of Experiment (실험계획법을 이용한 세슘보조 스퍼터링 공정의 특성분석)

  • Min, Chul-Hong;Park, Sung-Jin;Yoon, Neung-Goo;Kim, Tae-Seon
    • Journal of Surface Science and Engineering
    • /
    • v.40 no.4
    • /
    • pp.165-169
    • /
    • 2007
  • Compared to conventional Indium Tin Oxide (ITO) film deposition methods, cesium (Cs) assisted sputtering offers higher film characteristics in terms of electrical, mechanical and optical properties. However, it showed highly non-linear characteristics between process input factors and equipment responses. Therefore, to maximize film quality, optimization of manufacturing process is essential and process characterization is the first step for process optimization. For this, we designed 2 level design of experiment (DOE) to analyze ITO film characteristics including film thickness, resistivity and transmittance. DC power, pressure, carrier flow, Cs temperature and substrate temperature were selected for process input variables. Through statistical effect analysis methods, relation between three types of ITO film characteristics and five kinds of process inputs are successfully characterized and eventually, it can be used to optimize Cs assisted sputtering processes for various types of film deposition.