• Title/Summary/Keyword: ITO layer

Search Result 787, Processing Time 0.025 seconds

Flexible ITO/PEDOT:PSS Hybrid Transparent Conducting Electrode for Organic Photovoltaics

  • Lim, Kyounga;Jung, Sunghoon;Kang, Jae-Wook;Kim, Jong-Kuk;Kim, Do-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.299-299
    • /
    • 2013
  • Indium Tin Oxide (ITO) has widely been used as a transparent conductive oxide (TCE) for photovoltaic devices. Lately, flexibility of ITO becomes an issue as demand of flexible device increases. Several scientists have tried to substitute ITO to different materials such as conductive polymer, graphene, CNT, and metal nanowire because of ITO brittleness. Among the substitute materials, PEDOT:PSS has mostly paid attention because PEDOT:PSS has excellent flexibility and good conductivity. The conductivity of PEDOT:PSS increases up to 1000 S/cm with additives such as DMSO, EG, sorbitol, and so on. In our research group, we introduce a conductive polymer PEDOT:PSS as a buffer layer to improve not only flexibility but also conductivity. As PEDOT:PSS layer forms beneath ITO thin film (20 nm), sheet resistance decreases from $230{\Omega}$/${\Box}$ to $85{\Omega}$/${\Box}$ and crack initiation decreases from 4.5 mm to 3.5 mm as well. We have fabricated organic photovoltaic device and power conversion efficiencies using conventional ITO electrode and ITO/PEDOT:PSS hybrid electrode. The photovoltaic property such as power conversion efficiency for ITO/PEDOT:PSS hybrid electrode is comparable to the value obtained using conventional ITO electrode on glass substrate.

  • PDF

Synthesis of Organic EL Materials with Cyano Group and Evaluation of Emission Characteristics in Organic EL Devices (시안기를 가진 유기 EL 물질들의 합성 및 유기 EL 소자에서의 발광특성평가)

  • Kim, Dong Uk
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.3
    • /
    • pp.315-320
    • /
    • 1999
  • Novel electroluminescent materials, polymer material, PU-BCN and low molar mass material, D-BCN with the same chromophores were designed and synthesized. A molecular structure of chromophore was composed of bisstyrylbenzene derivative with cyano groups as electron injection and transport and phenylamine groups as hole injection and transport. Device structures with PU-BCN and D-BCN as an emission layer were fa-bricated, which were a single-layer device(SL), Indium-tin oxide(ITO)/emission layer/MgAg, and two kinds of double-layer devices which were composed of ITO/emission layer/oxadiazole derivative/MgAg as a DL-E device and ITO/triphenylamine derivative/emission layer/MgAg as a DL-H device. The two emission materials, PU-BCN and D-BCN with the same emission-chromophore were evaluated as having excellent performance of charge injection and transport and revealed almost the same emission characteristics in high current density. EL emission maximum peaks of two material were detected at about 640 nm wavelength of red emission region.

  • PDF

Effect of ITO thin films characterization by barrier layers$(SiO_2\;and\;Al_2O_3)$ on soda lime glass substrate (Soda lime glass기판위의 barrier층$(SiO_2,\;Al_2O_3)$이 ITO박막특성에 미치는 영향)

  • Lee, Jung-Min;Choi, Byung-Hyun;Ji, Mi-Jung;An, Yong-Tae;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.292-292
    • /
    • 2007
  • To apply PDP panel, Soda lime glass(SLG) is cheeper than Non-alkali glass and PD-200 glass but has problems such as low strain temperature and ion diffusion by alkali metal oxide. In this paper suggest the methode that prohibits ion diffusion by deposing barrier layer on SLG. Indium thin oxide(ITO) thin films and barrier layers were prepared on SLG substrate by Rf-magnetron sputtering. These films show a high electrical resistivity and rough uniformity as compared with PD-200 glass due to the alkali ion from the SLG on diffuse to the ITO film by the heat treatment. However these properties can be improved by introducing a barrier layer of $SiO_2\;or\;Al_2O_3$ between ITO film and SLG substrate. The characteristics of films were examined by the 4-point probe, SEM, UV-VIS spectrometer, and X-ray diffraction. GDS analysis confirmed that barrier layer inhibited Na and Ka ion diffusion from SLG. Especially ITO films deposited on the $Al_2O_3$ barrier layer had higher properties than those deposited on the $SiO_2$ barrier layer.

  • PDF

Electrical Properties of Organic light-emitting Diode with Oxygen Plasma Treatment (산소 플라즈마 처리에 따른 유기 발광 다이오드의 전기적 특성)

  • Kim, Seung-Tae;Hong, Jin-Woong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1566-1570
    • /
    • 2013
  • In this paper, we analyzed the electric characteristics of the OLEDs device of which anode ITO has been treated with the oxygen plasma. We fabricated the basic three-layer structure (ITO / AF / $Alq_3$ / $Cs_2CO_3$ / Al) device, analyzed how the oxygen plasma treatments of the ITO surface affects to the electrical characteristics of OLEDs. We also produced a four-layer structure device (ITO / AF / TPD / $Alq_3$ / $Cs_2CO_3$ / Al) with the oxygen plasma treatment. From the comparative analysis to the devices, we confirmed following results. The three-layer structure OLEDs device with oxygen plasma treatment has better characteristics than the device without the treatments; maximum luminance, luminous efficiency, and external quantum efficiency are improved approximately 151 [%], 126 [%], and 175[%], respectively. Also, the electric characteristics of the four-layer structure device with oxygen plasma treatment are improved comparing to the characteristics of the three-layer structure device with oxygen plasma treatment; maximum luminance, luminous efficiency, and external quantum efficiency are improved approximately 144 [%], 115 [%], and 124[%], respectively.

Improvement of Mchanical Property of Indium-tin-oxide Films on Polymer Substrates by using Organic Buffer Layer

  • Park, Sung-Kyu;Han, Jeong-In;Moon, Dae-Gyu;Kim, Won-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.2
    • /
    • pp.32-37
    • /
    • 2002
  • This paper gives the basic mechanical properties of indium-tin-oxide (ITO) films on polymer substrates which are exposed to externally and thermally induced bending force. By using modified Storney formula including triple layer structure and bulge test measuring the conductive changes of patterned ITO islands as a function of bending curvature, the mechanical stability of ITO films on polymer substrates was intensively investigated. The numerical analyses and experimental results show thermally and externally induced mechanical stresses in the films are responsible for the difference of thermal expansion between the ITO film and the substrate, and leer substrate material and its thickness, respectively. Therefore, a gradually ramped heating process and an organic buffer layer were employed to improve the mechanical stability, and then, the effects of the buffer layer were also quantified in terms of conductivity-strain variations. As a result, it is uncovered that a buffer layer is also a critical factor determining the magnitude of mechanical stress and the layer with the Young's modulus lower than a specific value can contribute to relieving the mechanical stress of the films.

Development of yellow and blue phosphor and their emission properties

  • Park Soo-Gil;Cho Seong-Ryoul;Son Won-Ken;Lim Kee-Joe;Lee Ju-Seong
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.24-27
    • /
    • 1998
  • Electroluminescence (EL) comes from the light emission obtained by the electrical excitation energy passing through a phosphor layer undo. an applied high electrical field $(10^6 V/cm)$. The preparation of white and blue phosphors and characterizations of light emitting alternating current powder electroluminescent devices (ACPELDs) were investigated. In this work, we fabricated two kinds of ELDs, that is, yellow electroluminescent device (B-ELD), blue electroluminescent device (B-ELD). The basic st.uctures of Y-ELD and B-ELD are ITO (Indium Tin Oxide)/phosphor layer/Insulator layer/Carbon electrode and ITO/Phosphor layer/Insulating layer/carbon electrode, respectively. Another structures of ITO/Phosphor and Insulator mixture layer/Backelectrode are introduced. EL spectra and luminance of two types of ELDs were measured by changing voltage at fixed frequency 0.4kHz, 1.5kHz. Blue and yellow phosphors prepared in this work show $50cd/m^2\;and\;30cd/m^2$ of luminance at 400Hz, 150V.

Preparation of Low Resistivity Transparent Conductive multilayer Thin Films by The Facing Targets Sputtering (대향 타겟식 스퍼티링법을 이용한 저저항 투명전도 다층박막의 제작)

  • Kim, Sang Mo;Park, Yong Seo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.13-16
    • /
    • 2014
  • We prepared the ITO/Ag multilayer thin films on soda-lime glass substrate by the Facing Target Sputtering System (FTS) at room temperature. To confirm the effect of Ag layer in ITO/Ag multilayer thin films, we have prepared various range of Ag layer in its thickness and investigated prior to the setting of ITO/Ag multilayer thin films. The thickness of Ag layer was controlled by the sputtering deposition time. Properties of as-prepared samples were investigated by using a four-point probe, UV-Visual spectrometer with a spectral visual range (400 - 800 nm) and X-ray diffractometer (XRD). As a result, the transmittance of as-prepared samples turned out to be very low in the visible range due to light-scattering on the surface of thin film as the thickness of Ag layer got increased. However, reduction of phenomenon of light-reflection in visual range was observed around 20nm of Ag thickness. We prepared the ITO/Ag multilayer thin film with a resistivity of about $8{\times}10^{-5}[{\Omega}-cm]$ and a transmittance of more than 80 % at 550 nm.

Effect of SiO2 and Nb2O5 Buffer Layer on Optical Characteristics of ITO Thin Film

  • Kwon, Yong-Han;Jang, Gun-Eik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.29-33
    • /
    • 2015
  • This paper presents the results of the optical characteristics of ITO thin film with different buffer layer thicknesses of $SiO_2$ and $Nb_2O_5$ for touch sensor application. $SiO_2$ and $Nb_2O_5$ buffer layers were deposited using RF magnetron sputtering equipment. The buffer layers were inserted between glass and ITO layers. In order to compare with the experimental results, the Essential Macleod Program (EMP) was adopted. Based on EMP simulation, the [$Nb_2O_5{\mid}SiO_2{\mid}ITO$] multi-layered thin film exhibited high transmittance of more than 85% in the visible region. The actual experimental results also showed transmittance of more than 85% in the visible region, indicating that the simulated results were well matched with the experimental results. The sheet resistance of ITO based film was about $340{\Omega}/sq$. The surface roughness maintained a relatively small value within the range of 0.1~0.4 nm when using the $Nb_2O_5$ and $SiO_2$ buffer layers.

Feasibility of Indium Tin Oxide (ITO) Swarf Particles to Transparent Conductive Oxide (TCO)

  • Hong, Sung-Jei;Yang, DuckJoo;Cha, Seung Jae;Lee, Jae-Yong;Han, Jeong-In
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.50-53
    • /
    • 2015
  • Indium (In) is widely used for transparent electrodes of photovoltaics as a form of indium tin oxide (ITO) due to its superior characteristics of environmental stability, relatively low electrical resistivity and high transparency to visible light. However, In has been worn off in proportion to growth the In related market, and it leads to raise of price. Although In is obtained from ITO target scarps, much harmful elements are used for the recycling process. To decrease of harmful elements, ITO swarf particles obtained from target scraps was characterized whether it is feasible to transparent conductive oxide (TCO). The ITO swarf was crushed with milling process, and it was mixed with new ITO nanoparticles. The mixed particles were well dispersed into ink solvent to make-up an ink, and it was well coated onto glass substrate. After heat-treatment at $400^{\circ}C$ under $N_2$ rich environments, optical transmittance at 550 nm and sheet resistance of the ITO ink coated layer was 71.6% and $524.67{\Omega}/{\square}$, respectively. Therefore, it was concluded that the ITO swarf was feasible to TCO of touch screen panel.

The Stability and Indium Diffusion from ITO to PPV Layer of Polymer Light Emitting Devices with/without PI Blocking Layer

  • Seongjin Cho;Park, Dongkyu;Taewoo Kwon;Dongsun Yoo;Kim, Ilgon
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.1
    • /
    • pp.51-54
    • /
    • 2002
  • Polymer EL devices of glass/ITO/PI/MEH-PPV/Al structure were fabricated using spin coating and the Ionized Cluster Beam deposition technique. PMDA-ODA type thin polyimide films which can be used as a impurity blocking layer of EL device were deposited by ICB. According to our previous results, the packing densities of polyimide films were subject to change and depend on their deposition condition. By inserting a Pl layer with various thickness and packing density, I-V characteristics and life time of the devices were investigated to determine the role of a interlayer. The blocking of impurity diffusion from ITO to luminescent layer were confirmed by XPS.

  • PDF