• 제목/요약/키워드: ITO electrode

검색결과 490건 처리시간 0.033초

Poly(3-hexylthiophene) 발광소자의 금속전극 의존성 (Dependance on Metal Electrode of Poly(3-hexylthiophene) EL Device)

  • 서부완;김주승;김형곤;이경섭;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.162-165
    • /
    • 2000
  • To investigate the effect of metal electrode in electroluminescent[EL] devices, we fabricated EL devices of ITO/P3HT/Al, ITO/P3HT/LiF/Al and ITO/P3HT/Mg:In structure. In current-voltage-light power characteristics, turn-on voltage of EL devices using LiF insulating layer and Mg:In(2.8V) metal electrode is lower than EL device using Al(4.2V). Besides the external quantum efficiency is improved also. The reason is related to carrier mobility and carrier injection, which would affect the hole-electron balance. In the device with Al electrode, holes injected from indium-tin-oxide[ITO] to poly(3-hexylthiophene)[P3HT] might reach the Al electrode without interacting with injected electrons, because the electron injection efficiency was very low for this electrode. Besides oxidation of the Al electrode is likely due to holes reaching the cathode without meeting injected electrons. Another possible reason for the higher EL efficiency may be the insulating layer playing the role of a tunneling barrier for holes to the Al electrode. In all EL devices, the orange-red light was clearly visible in a dark room. Maximum peak wavelength of EL spectrum emitted at 640nm in accordance with photon energy 1.9eV

  • PDF

전도성 고분자 박막을 이용한 ITO 투명 전극 필름의 열성형 안정성 향상 연구 (The Enhanced Thermoforming Stability of ITO Transparent Electrode Film by Using the Conducting Polymer Thin-Film)

  • 손서영;박성연;이상섭;윤창훈
    • 멤브레인
    • /
    • 제33권5호
    • /
    • pp.248-256
    • /
    • 2023
  • ITO 투명 전극 필름은 디스플레이, 전기 자동차 등 산업 전 범위에서 널리 사용되는 전자 재료이다. 본 연구에서는 이러한 indium tin oxide (ITO) 필름의 열성형 안정성을 향상시키기 위하여 Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) 전도성 고분자 코팅 용액 조성을 결정하였다. 1000 S/cm의 고 전도성을 보이는 PEDOT:PSS 용액에 끓는점이 각기 다른 4가지 종류의 용매를 희석하였고, 코팅 전 후 면저항 변화를 분석하였다. 또한 380~800 nm 영역의 광 투과율 분석 및 Raman 스펙트럼 분석을 통하여 PEDOT:PSS 박막이 코팅된 ITO 투명 전극의 전기적 특성 결정 메커니즘을 규명하였다. 230℃ 열성형 공정 결과 ITO 필름은 113% 연신 상태에서 이미 전기 전도성을 읽었지만, ethylene glycol을 희석 용매로 사용하여 얻어진 전도성 고분자 박막이 적용된 ITO 필름은 126% 고 연신 상태에서도 초기 60 Ω/sq 면저항을 246 Ω/sq로 유지하는 우수한 전기 전도성을 보였다.

Electrical, optical, and thermal properties of AZO co-sputtered ITO electrode for organic light emitting diodes

  • Park, Young-Seok;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.416-419
    • /
    • 2008
  • In this study, we report on the characteristics of Aldoped ZnO (AZO) co-sputtered indium tin oxide (ITO) films prepared by dual target direct current (DC) magnetron sputtering at room temperature for organic light emitting diodes (OLEDs). The electrical and optical properties of co-sputtered IAZTO electrode were critically dependent on the DC power of AZO. Furthermore, the characteristics of co-sputtered IAZTO electrode were influenced by rapid thermal annealing temperature.

  • PDF

고전도성 투명전극인 ITO/Ag/ITO 다층박막에 관한 광학적 분석 (Optical Analysis of the ITO/Ag/ITO Multiple Layers as a Highly Conductive Transparent Electrode)

  • 윤여탁;조의식;권상직
    • 반도체디스플레이기술학회지
    • /
    • 제18권1호
    • /
    • pp.87-91
    • /
    • 2019
  • As a highly conductive and transparent electrode, ITO/Ag/ITO multilayers are fabricated using an in-line sputtering method. Optimal thickness conditions have been investigated in terms of the optical transmittance and the electrical conductance. Considering the optical properties, in this study, the experimental characteristics are analyzed based on theoretical phenomena, and they are compared with the simulated results. The simulations are based on the finite-difference-time-domain (FDTD) method in solving linear Maxwell equations. Consequently, the results showed that ITO/Ag/ITO multilayer structures with respective thicknesses of 39.2 nm/10.7 nm/39.2 nm are most suitable with an average transmittance of about 87% calculated for wavelengths ranging from 400-800 nm and a sheet resistance of about $7.1{\Omega}/{\square}$.

Discharge Characteristics of a Plasma Display using Vertical Auxiliary Electrodes

  • Moon, Cheol-Hee
    • Journal of Information Display
    • /
    • 제9권1호
    • /
    • pp.20-25
    • /
    • 2008
  • In a conventional plasma display, the bus electrode was located on the ITO electrode at the outer part of each cell. We propose a new electrode configuration using vertical auxiliary electrodes which play a role of electrically connecting ITO and bus electrodes with the aim of enhancing discharge and luminous characteristics of the PDP (Plasma Display Panel). In this paper, luminance and luminous efficiency of the 3 in.-diagonal test panel are measured with various number of vertical auxiliary electrodes such as 2, 50 and 150. The change in the luminous characteristics is explained in connection with the discharge characteristics of the PDP cells such as current peak, IR emission peak and ICCD picture image.

Effects of the Ag Layer Embedded in NIZO Layers as Transparent Conducting Electrodes for Liquid Crystal Displays

  • Oh, Byeong-Yun;Heo, Gi-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권1호
    • /
    • pp.33-36
    • /
    • 2016
  • In the present work, a Ni-doped indium zinc oxide (NIZO) film and its multilayers with Ag layers were investigated as transparent conducting electrodes for liquid crystal display (LCD) applications, as a substitute for indium tin oxide (ITO) electrodes. By interposing the Ag layer between the NIZO layers, the loss of the optical transmittance occurred; however, the Ag layer brought enhancement of electrical sheet resistance to the NIZO/Ag/NIZO multilayer electrode. The twisted nematic cell based on the NIZO/Ag/NIZO multilayer electrode exhibited superior electro-optical characteristics than those based on single NIZO electrode and was competitive compared to those based on the conventional ITO electrode. An LCD-based NIZO/Ag/NIZO multilayer electrode may allow new approaches to conventional ITO electrodes in display technology.

Characteristics of ITO electrode films grown on PET substrate by Roll-to-Roll Facing Target Sputtering system for flexible OLEDs

  • Cho, Sung-Woo;Choi, Kwang-Hyuk;Jeong, Jin-A;Kim, Bong-Seok;Jeong, Dae-Ju;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.613-616
    • /
    • 2008
  • We report on electrical and optical properties of flexible ITO electrode grown on PET substrate using a specially designed roll-to-roll facing target sputtering (R2R FTS) system at room temperature without conventional cooling drum. Due to effective confinement of high density plasma between ITO targets, we can grow a flexible ITO electrode without cooling drum at room temperature.

  • PDF

Three-dimensional Fluid Simulation for the Variation of Electrode Geometry in ITO-less PDP Cells

  • Song, In-Choel;Hwang, Seok-Won;Cho, Sung-Yong;Lee, Don-Kyu;Lee, Ho-June;Park, Jung-Hoo;Lee, Hae-June
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.404-407
    • /
    • 2008
  • Several ITO-less PDP cell structures are presented to improve luminous efficacy. The ITO-less PDP have been applied recently at actual panel manufacture. The influence of ITO-less PDP cell structure on the discharge characteristics has been investigated by using three-dimensional fluid simulation. The variations of electrode geometry parameters such as gap distance, cross bar length, and hump length are investigated for the optimization of cell design.

  • PDF

IBS electrode structure for enhanced performance in ac PDP

  • Yang, Seung-Hee;Moon, Jae-Seung;Kim, Kwang-Nyun;Moon, Cheol-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.589-592
    • /
    • 2007
  • In this paper, we propose IBS(ITO-BUS Separated) electrode structure. BUS electrode lines are placed apart from the ITO electrode lines, and they are electrically connected with vertical auxiliary electrodes. We varied the lengths of the vertical electrodes as 70, 120, 320um. The highest luminous efficiency and the largest IR emission peak were obtained for 70um length.

  • PDF