• Title/Summary/Keyword: ITER Project

Search Result 10, Processing Time 0.028 seconds

National Cultural Dimensions and their Impact on Quality Management Maturity and Project Quality Performance: Focusing on ITER Project (국가의 문화차원이 품질경영 성숙도 수준과 프로젝트 품질에 미치는 영향: ITER 프로젝트를 중심으로)

  • Hyun, Young-Jun;Song, Haegeun;Park, Young-Taek
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.2
    • /
    • pp.247-260
    • /
    • 2017
  • Purpose: The study is aimed to identify the national cultural dimensions that are affecting the quality management (QM) maturity level and the project quality performance, and analyze their relationships. Methods: This study collected the data of QM Maturity level based on Crosby's QM maturity model and the project quality performance using the Iron Triangle (Quality, Time/Schedule and Cost) from the employees who are participating in the ITER Project across the major 8 countries (China, France, Italy, Japan, Korea, Russia, U.K. and U.S.A.). Three research hypotheses are proposed concerning the national cultural dimensions in this study and Hofstede's five cultural dimensions framework are used for the statistical test. Results: The results are two folds in the study: First, there is a significant positive correlation between the QM maturity level and the project quality performance. Second, three cultural dimensions (Collectivism, Large Power Distance and Strong Uncertainty Avoidance) and five cultural dimensions (Collectivism, Large Power Distance, Strong Uncertainty Avoidance, Feminity and Long Term Orientation) have a positive impact on the QM maturity level and the project quality performance respectively. Conclusion: From the results, the understanding and consideration of the culture difference among the countries participating International Collaboration R&D project are recommended.

Tritium Fuel Cycle Technology of ITER Project (ITER 사업의 삼중수소 연료주기 기술)

  • Yun, Sei-Hun;Chang, Min-Ho;Kang, Hyun-Goo;Kim, Chang-Shuk;Cho, Seung-Yon;Jung, Ki-Jung;Chung, Hong-Suk;Song, Kyu-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.56-64
    • /
    • 2012
  • The ITER fuel cycle is designed for DT operation in equimolar ratio. It involves not only a group of fuelling system and torus cryo-pumping system of the exhaust gases through the divertor from the torus in tokamak plant, but also from the exhaust gas processing of the fusion effluent gas mixture connected to the hydrogen isotope separation in cryogenic distillation to the final safe storage & delivery of the hydrogen isotopes in tritium plant. Tritium plant system supplies deuterium and tritium from external sources and treats all tritiated fluids in ITER operation. Every operation and affairs is focused on the tritium inventory accountancy and the confinement. This paper describes the major fuel cycle processes and interfaces in the tritium plant in aspects of upcoming technologies for future hydrogen and/or hydrogen isotope utilization.

Development of Remote Laser Welding-Cutting Process for Maintenance of Hydraulic Connection Module on ITER Project (핵융합 발전로 냉각수 연결모듈의 원격 유지보수를 위한 레이저 용접-절단 공정개발)

  • Kim, Yong;Park, Ki-Young;Lee, Kyoung-Don
    • Journal of Welding and Joining
    • /
    • v.30 no.1
    • /
    • pp.51-58
    • /
    • 2012
  • To assess hydraulic connections between sub-components of the International Thermonuclear Experimental Reactor (ITER) diagnostic port plug, the laser welding and ablation cutting process were investigated in order to be applied the remote handling maintenance. In this study, laser ablation cutting, which vaporizes a small amount of solid material directly into gas by focusing a laser beam of high density energy, is adopted in order to overcome the limitation of the normal laser cutting technology that the head should be placed as close to the work piece as possible to blow out melt metal at a distance. Complete cutting of a work piece is obtained by repetitive multi-passes of the laser beam. The welding and cutting process were tested on the sample work pieces and finally on a prototype of a hydraulic connection module for remote handling. The results showed that this process can be a promising candidate for hydraulic connections by remote handling.

OVERVIEW OF FUSION BLANKET R&D IN THE US OVER THE LAST DECADE

  • ABDOU M. A.;MORLEY N. B.;YING A. Y.;SMOLENTSEV S.;CALDERONI P.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.401-422
    • /
    • 2005
  • We review here research and development progress achieved in US Plasma Chamber technology roughly over the last decade. In particular, we focus on two major programs carried out in the US: the APEX project (1998-2003) and the US ITER TBM activities (2003-present). The APEX project grew out of the US fusion program emphasis in the late 1990s on more fundamental science and innovation. APEX was commissioned to investigate novel technology concepts for achieving high power density and high temperature reactor coolants. In particular, the idea of liquid walls and the related research is described here, with some detailed examples of liquid metal and molten salt magnetohydrodynamic and free surface effects on flow control and heat transfer. The ongoing US ITER Test Blanket Module (TBM) program is also described, where the current first wall/blanket concepts being considered are the dual coolant lead lithium concept and the solid breeder helium cooled concepts, both using ferritic steel structures. The research described for these concepts includes both thermofluid MHD issues for the liquid metal coolant in the DCLL, and thermomechanical issues for ceramic breeder packed pebble beds in the solid breeder concept. Finally, future directions for ongoing research in these areas are described.

Cooling Water Utility of Future Clean Energy Source KSTAR (미래 청정에너지원 KSTAR의 냉각수설비)

  • Lee, J.M.;Kim, Y.J.;Park, D.S.;Lim, D.S.
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.596-601
    • /
    • 2006
  • Because of insufficiency of energy resources and pollution of environment, it is necessary to develop alternative energy sources. Nuclear fission energy is used widely for source of electric Power but being restricted due to radioactivity problem. Nuclear fission is highlighted as the new generation of nuclear energy and researched worldwide because of low risk of radiation effect. The representatives of fusion research is China's EAST, KSTAR of Korea and ITER of world. Korea Superconducting Tokamak Advanced Research(KSTAR) project is on progress for the completion in August, 2007. In this study, the research of utility system for KSTAR be carried out. The utility system of KSTAR is consist of water cooling & heating system, $N_2$ gas system, DI water system, service water system and instrument air & auto control system. The progress of KSTAR utility system is under commissioning state after construction completion. The optimal operation scenario will be verified during commissioning and adopted to the KSTAR operation.

  • PDF