• Title/Summary/Keyword: IT-fusion

Search Result 2,959, Processing Time 0.034 seconds

PROMISE: A QR Code PROjection Matrix Based Framework for Information Hiding Using Image SEgmentation

  • Yixiang Fang;Kai Tu;Kai Wu;Yi Peng;Yunqing Shi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.471-485
    • /
    • 2023
  • As data sharing increases explosively, such information encoded in QR code is completely public as private messages are not securely protected. This paper proposes a new 'PROMISE' framework for hiding information based on the QR code projection matrix by using image segmentation without modifying the essential QR code characteristics. Projection matrix mapping, matrix scrambling, fusion image segmentation and steganography with SEL(secret embedding logic) are part of the PROMISE framework. The QR code could be mapped to determine the segmentation site of the fusion image as a binary information matrix. To further protect the site information, matrix scrambling could be adopted after the mapping phase. Image segmentation is then performed on the fusion image and the SEL module is applied to embed the secret message into the fusion image. Matrix transformation and SEL parameters should be uploaded to the server as the secret key for authorized users to decode the private message. And it was possible to further obtain the private message hidden by the framework we proposed. Experimental findings show that when compared to some traditional information hiding methods, better anti-detection performance, greater secret key space and lower complexity could be obtained in our work.

Development of machine learning model for automatic ELM-burst detection without hyperparameter adjustment in KSTAR tokamak

  • Jiheon Song;Semin Joung;Young-Chul Ghim;Sang-hee Hahn;Juhyeok Jang;Jungpyo Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.100-108
    • /
    • 2023
  • In this study, a neural network model inspired by a one-dimensional convolution U-net is developed to automatically accelerate edge localized mode (ELM) detection from big diagnostic data of fusion devices and increase the detection accuracy regardless of the hyperparameter setting. This model recognizes the input signal patterns and overcomes the problems of existing detection algorithms, such as the prominence algorithm and those of differential methods with high sensitivity for the threshold and signal intensity. To train the model, 10 sets of discharge radiation data from the KSTAR are used and sliced into 11091 inputs of length 12 ms, of which 20% are used for validation. According to the receiver operating characteristic curves, our model shows a positive prediction rate and a true prediction rate of approximately 90% each, which is comparable to the best detection performance afforded by other algorithms using their optimized hyperparameters. The accurate and automatic ELM-burst detection methodology used in our model can be beneficial for determining plasma properties, such as the ELM frequency from big data measured in multiple experiments using machines from the KSTAR device and ITER. Additionally, it is applicable to feature detection in the time-series data of other engineering fields.

Strengthened Madden-Julian Oscillation Variability improved the 2020 Summer Rainfall Prediction in East Asia

  • Jieun Wie;Semin Yun;Jinhee Kang;Sang-Min Lee;Johan Lee;Baek-Jo Kim;Byung-Kwon Moon
    • Journal of the Korean earth science society
    • /
    • v.44 no.3
    • /
    • pp.185-195
    • /
    • 2023
  • The prolonged and heavy East Asian summer precipitation in 2020 may have been caused by an enhanced Madden-Julian Oscillation (MJO), which requires evaluation using forecast models. We examined the performance of GloSea6, an operational forecast model, in predicting the East Asian summer precipitation during July 2020, and investigated the role of MJO in the extreme rainfall event. Two experiments, CON and EXP, were conducted using different convection schemes, 6A and 5A, respectively to simulate various aspects of MJO. The EXP runs yielded stronger forecasts of East Asian precipitation for July 2020 than the CON runs, probably due to the prominent MJO realization in the former experiment. The stronger MJO created stronger moist southerly winds associated with the western North Pacific subtropical high, which led to increased precipitation. The strengthening of the MJO was found to improve the prediction accuracy of East Asian summer precipitation. However, it is important to note that this study does not discuss the impact of changes in the convection scheme on the modulation of MJO. Further research is needed to understand other factors that could strengthen the MJO and improve the forecast.

DL-ML Fusion Hybrid Model for Malicious Web Site URL Detection Based on URL Lexical Features (악성 URL 탐지를 위한 URL Lexical Feature 기반의 DL-ML Fusion Hybrid 모델)

  • Dae-yeob Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.881-891
    • /
    • 2023
  • Recently, various studies on malicious URL detection using artificial intelligence have been conducted, and most of the research have shown great detection performance. However, not only does classical machine learning require a process of analyzing features, but the detection performance of a trained model also depends on the data analyst's ability. In this paper, we propose a DL-ML Fusion Hybrid Model for malicious web site URL detection based on URL lexical features. the propose model combines the automatic feature extraction layer of deep learning and classical machine learning to improve the feature engineering issue. 60,000 malicious and normal URLs were collected for the experiment and the results showed 23.98%p performance improvement in maximum. In addition, it was possible to train a model in an efficient way with the automation of feature engineering.

Image fusion technique using flat panel detector rotational angiography for transvenous embolization of intracranial dural arteriovenous fistula

  • Jai Ho Choi;Yong Sam Shin;Bum-soo Kim
    • Journal of Cerebrovascular and Endovascular Neurosurgery
    • /
    • v.25 no.3
    • /
    • pp.253-259
    • /
    • 2023
  • Precise evaluation of the feeders, fistulous points, and draining veins plays a key role for successful embolization of intracranial dural arteriovenous fistulas (DAVF). Digital subtraction angiography (DSA) is a gold standard diagnostic tool to assess the exact angioarchitecture of DAVFs. With the advent of new image postprocessing techniques, we lately have been able to apply image fusion techniques with two different image sets obtained with flat panel detector rotational angiography. This new technique can provide additional and better pretherapeutic information of DAVFs over the conventional 2D and 3D angiographies. In addition, it can be used during the endovascular treatment to help the accurate and precise navigation of the microcatheter and microguidwire inside the vessels and identify the proper location of microcatheter in the targeted shunting pouch. In this study, we briefly review the process of an image fusion technique and introduce our clinical application for treating DAVFs, especially focused on the transvenous embolization.

Gradient Fusion Method for Night Video Enhancement

  • Rao, Yunbo;Zhang, Yuhong;Gou, Jianping
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.923-926
    • /
    • 2013
  • To resolve video enhancement problems, a novel method of gradient domain fusion wherein gradient domain frames of the background in daytime video are fused with nighttime video frames is proposed. To verify the superiority of the proposed method, it is compared to conventional techniques. The implemented output of our method is shown to offer enhanced visual quality.

Development of the Driving path Estimation Algorithm for Adaptive Cruise Control System and Advanced Emergency Braking System Using Multi-sensor Fusion (ACC/AEBS 시스템용 센서퓨전을 통한 주행경로 추정 알고리즘)

  • Lee, Dongwoo;Yi, Kyongsu;Lee, Jaewan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.28-33
    • /
    • 2011
  • This paper presents driving path estimation algorithm for adaptive cruise control system and advanced emergency braking system using multi-sensor fusion. Through data collection, yaw rate filtering based road curvature and vision sensor road curvature characteristics are analyzed. Yaw rate filtering based road curvature and vision sensor road curvature are fused into the one curvature by weighting factor which are considering characteristics of each curvature data. The proposed driving path estimation algorithm has been investigated via simulation performed on a vehicle package Carsim and Matlab/Simulink. It has been shown via simulation that the proposed driving path estimation algorithm improves primary target detection rate.

An Effective Mapping for a Mobile Robot using Error Backpropagation based Sensor Fusion (오류 역전파 신경망 기반의 센서융합을 이용한 이동로봇의 효율적인 지도 작성)

  • Kim, Kyoung-Dong;Qu, Xiao-Chuan;Choi, Kyung-Sik;Lee, Suk-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1040-1047
    • /
    • 2011
  • This paper proposes a novel method based on error back propagation neural networks to fuse laser sensor data and ultrasonic sensor data for enhancing the accuracy of mapping. For navigation of single robot, the robot has to know its initial position and accurate environment information around it. However, due to the inherent properties of sensors, each sensor has its own advantages and drawbacks. In our system, the robot equipped with seven ultrasonic sensors and a laser sensor navigates to map two different corridor environments. The experimental results show the effectiveness of the heterogeneous sensor fusion using an error backpropagation algorithm for mapping.

Secure Biometric Hashing by Random Fusion of Global and Local Features

  • Ou, Yang;Rhee, Kyung-Hyune
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.875-883
    • /
    • 2010
  • In this paper, we present a secure biometric hashing scheme for face recognition by random fusion of global and local features. The Fourier-Mellin transform and Radon transform are adopted respectively to form specialized representation of global and local features, due to their invariance to geometric operations. The final biometric hash is securely generated by random weighting sum of both feature sets. A fourfold key is involved in our algorithm to ensure the security and privacy of biometric templates. The proposed biometric hash can be revocable and replaced by using a new key. Moreover, the attacker cannot obtain any information about the original biometric template without knowing the secret key. The experimental results confirm that our scheme has a satisfactory accuracy performance in terms of EER.

A METHOD OF COLOR EXCESS DETERMINATION FOR HIGH AMPLITUDE δ SCUTI STARS

  • Kim, Chul-Hee;Choi, J.H.;Moon, B.K.;Boonrucksar, Soonthornthum
    • Journal of The Korean Astronomical Society
    • /
    • v.42 no.6
    • /
    • pp.155-159
    • /
    • 2009
  • In order to determine color excess in the $uvby\beta$ color system for high amplitude $\delta$ Scuti stars, reddening free $[m_1]$, $[c_1]$, and $\beta$ indices data were obtained from the existing literature for 21 stars. Then, the three intrinsic relations of $(b-y)_0$ - $[m_1]$, $(b-y)_0$ - $[c_1]$, and $(b-y)_0$ - $\beta$ were investigated. Among these, it was shown that the $(b-y)_0$-$[c_1]$ relation is the most useful. By establishing intrinsic $(b-y)_0$-$[c_1]$ relations for six reddening calibration stars, color excesses of other stars were determined.