• Title/Summary/Keyword: IT-based system

Search Result 37,094, Processing Time 0.079 seconds

Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification (전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법)

  • Byambajav, Batkhuu;Alikhanov, Jumabek;Fang, Yang;Ko, Seunghyun;Jo, Geun Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet) is one class of the powerful Deep Neural Network that can analyze and learn hierarchies of visual features. Originally, first neural network (Neocognitron) was introduced in the 80s. At that time, the neural network was not broadly used in both industry and academic field by cause of large-scale dataset shortage and low computational power. However, after a few decades later in 2012, Krizhevsky made a breakthrough on ILSVRC-12 visual recognition competition using Convolutional Neural Network. That breakthrough revived people interest in the neural network. The success of Convolutional Neural Network is achieved with two main factors. First of them is the emergence of advanced hardware (GPUs) for sufficient parallel computation. Second is the availability of large-scale datasets such as ImageNet (ILSVRC) dataset for training. Unfortunately, many new domains are bottlenecked by these factors. For most domains, it is difficult and requires lots of effort to gather large-scale dataset to train a ConvNet. Moreover, even if we have a large-scale dataset, training ConvNet from scratch is required expensive resource and time-consuming. These two obstacles can be solved by using transfer learning. Transfer learning is a method for transferring the knowledge from a source domain to new domain. There are two major Transfer learning cases. First one is ConvNet as fixed feature extractor, and the second one is Fine-tune the ConvNet on a new dataset. In the first case, using pre-trained ConvNet (such as on ImageNet) to compute feed-forward activations of the image into the ConvNet and extract activation features from specific layers. In the second case, replacing and retraining the ConvNet classifier on the new dataset, then fine-tune the weights of the pre-trained network with the backpropagation. In this paper, we focus on using multiple ConvNet layers as a fixed feature extractor only. However, applying features with high dimensional complexity that is directly extracted from multiple ConvNet layers is still a challenging problem. We observe that features extracted from multiple ConvNet layers address the different characteristics of the image which means better representation could be obtained by finding the optimal combination of multiple ConvNet layers. Based on that observation, we propose to employ multiple ConvNet layer representations for transfer learning instead of a single ConvNet layer representation. Overall, our primary pipeline has three steps. Firstly, images from target task are given as input to ConvNet, then that image will be feed-forwarded into pre-trained AlexNet, and the activation features from three fully connected convolutional layers are extracted. Secondly, activation features of three ConvNet layers are concatenated to obtain multiple ConvNet layers representation because it will gain more information about an image. When three fully connected layer features concatenated, the occurring image representation would have 9192 (4096+4096+1000) dimension features. However, features extracted from multiple ConvNet layers are redundant and noisy since they are extracted from the same ConvNet. Thus, a third step, we will use Principal Component Analysis (PCA) to select salient features before the training phase. When salient features are obtained, the classifier can classify image more accurately, and the performance of transfer learning can be improved. To evaluate proposed method, experiments are conducted in three standard datasets (Caltech-256, VOC07, and SUN397) to compare multiple ConvNet layer representations against single ConvNet layer representation by using PCA for feature selection and dimension reduction. Our experiments demonstrated the importance of feature selection for multiple ConvNet layer representation. Moreover, our proposed approach achieved 75.6% accuracy compared to 73.9% accuracy achieved by FC7 layer on the Caltech-256 dataset, 73.1% accuracy compared to 69.2% accuracy achieved by FC8 layer on the VOC07 dataset, 52.2% accuracy compared to 48.7% accuracy achieved by FC7 layer on the SUN397 dataset. We also showed that our proposed approach achieved superior performance, 2.8%, 2.1% and 3.1% accuracy improvement on Caltech-256, VOC07, and SUN397 dataset respectively compare to existing work.

Territorial Expansion the King Võ (Võ Vương, 1738-1765) in the Mekong Delta: Variation of Tám Thực Chi Kế (strategy of silkworm nibbling) and Dĩ Man Công Man (to strike barbarians by barbarians) in the Way to Build a New World Order (무왕(武王, 1738-1765) 시기 메콩 델타에서의 영토 확장 추이: 제국으로 가는 길, '잠식지계(蠶食之計)'와 '이만공만(以蠻攻蠻)'의 변주)

  • CHOI, Byung Wook
    • The Southeast Asian review
    • /
    • v.27 no.2
    • /
    • pp.37-76
    • /
    • 2017
  • $Nguy{\tilde{\hat{e}}}n$ Cư Trinh has two faces in the history of territorial expansion of Vietnam into the Mekong delta. One is his heroic contribution to the $Nguy{\tilde{\hat{e}}}n$ family gaining control over the large part of the Mekong delta. The other is his role to make the eyes of readers of Vietnamese history be fixed only to the present territory of Vietnam. To the readers, $Nguy{\tilde{\hat{e}}}n$ Cư Trinh's achievement of territorial expansion was the final stage of the nam $ti{\acute{\hat{e}}n$ of Vietnam. In fact, however, his achievement was partial. This study pays attention to the King $V{\tilde{o}}$ instead of $Nguy{\tilde{\hat{e}}}n$ Cư Trinh in the history of the territorial expansion in the Mekong delta. King's goal was more ambitious. And the ambition was propelled by his dream to build a new world, and its order, in which his new capital, $Ph{\acute{u}}$ $Xu{\hat{a}}n$ was to be the center with his status as an emperor. To improve my assertion, three elements were examined in this article. First is the nature of $V{\tilde{o}}$ Vương's new kingship. Second is the preparation and the background of the military operation in the Mekong Delta. The nature of the new territory is the third element of the discussion. In 1744, six years after this ascending to the throne, $V{\tilde{o}}$ Vương declared he was a king. Author points out this event as the departure of the southern kingdom from the traditional dynasties based on the Red River delta. Besides, the government system, northern custom and way of dressings were abandoned and new southern modes were adopted. $V{\tilde{o}}$ Vương had enough tributary kingdoms such as Cambodia, Champa, Thủy $X{\tilde{a}}$, Hoả $X{\tilde{a}}$, Vạn Tượng, and Nam Chưởng. Compared with the $L{\hat{e}}$ empire, the number of the tributary kingdoms was higher and the number was equivalent to that of the Đại Nam empire of the 19th century. In reality, author claims, the King $V{\tilde{o}}^{\prime}s$ real intention was to become an emperor. Though he failed in using the title of emperor, he distinguished himself by claiming himself as the Heaven King, $Thi{\hat{e}}n$ Vương. Cambodian king's attack on the thousands of Cham ethnics in Cambodian territory was an enough reason to the King $V{\tilde{o}}^{\prime}s$ military intervention. He considered these Cham men and women as his amicable subjects, and he saw them a branch of the Cham communities in his realm. He declared war against Cambodia in 1750. At the same time he sent a lengthy letter to the Siamese king claiming that the Cambodia was his exclusive tributary kingdom. Before he launched a fatal strike on the Mekong delta which had been the southern part of Cambodia, $V{\tilde{o}}$ Vương renovated his capital $Ph{\acute{u}}$ $Xu{\hat{a}}n$ to the level of the new center of power equivalent to that of empire for his sake. Inflation, famine, economic distortion were also the features of this time. But this study pays attention more to the active policy of the King $V{\tilde{o}}$ as an empire builder than to the economic situation that has been told as the main reason for King $V{\tilde{o}}^{\prime}s$ annexation of the large part of the Mekong delta. From the year of 1754, by the initiative of $Nguy{\tilde{\hat{e}}}n$ Cư Trinh, almost whole region of the Mekong delta within the current border line was incorporated into the territory of $V{\tilde{o}}$ Vương within three years, though the intention of the king was to extend his land to the right side of the Mekong Basin beyond the current border such as Kampong Cham, Prey Vieng, and Svai Rieng. The main reason was $V{\tilde{o}}$ Vương's need to expand his territory to be matched with that of his potential empire with the large number of the tributary kingdoms. King $V{\tilde{o}}^{\prime}s$ strategy was the variation of 'silkworm nibbling' and 'to strike barbarians by barbarians.' He ate the land of Lower Cambodia, the region of the Mekong delta step by step as silkworm nibbles mulberry leave(general meaning of $t{\acute{a}}m$ thực), but his final goal was to eat all(another meaning of $t{\acute{a}}m$ thực) the part of the Mekong delta including the three provinces of Cambodia mentioned above. He used Cham to strike Cambodian in the process of getting land from Long An area to $Ch{\hat{a}}u$ Đốc. This is a faithful application of the Dĩ Man $C{\hat{o}}ng$ Man (to strike barbarians by barbarians). In addition he used Chinese refugees led by the Mạc family or their quasi kingdom to gain land in the region of $H{\grave{a}}$ $Ti{\hat{e}}n$ and its environs from the hand of Cambodian king. This is another application of Dĩ Man $C{\hat{o}}ng$ Man. In sum, author claims a new way of looking at the origin of the imperial world order which emerged during the first half of the 19th century. It was not the result of the long history of Đại Việt empires based on the Red River delta, but the succession of the King $V{\tilde{o}}^{\prime}s$ new world based on $Ph{\acute{u}}$ $Xu{\hat{a}}n$. The same ways of Dĩ Man $C{\hat{o}}ng$ Man and $T{\acute{a}}m$ Thực Chi $K{\acute{\hat{e}}}$ were still used by $V{\tilde{o}}^{\prime}s$ descendents. His grandson Gia Long used man such as Thai, Khmer, Lao, Chinese, and European to win another man the '$T{\hat{a}}y$ Sơn bandits' that included many of Chinese pirates, Cham, and other mountain peoples. His great grand son Minh Mạng constructed a splendid empire. At the same time, however, Minh Mạng kept expanding the size of his empire by eating all the part of Cambodia and Cham territories.

Characteristic on the Layout and Semantic Interpretation of Chungryu-Gugok, Dongaksan Mountain, Gokseong (곡성 동악산 청류구곡(淸流九曲)의 형태 및 의미론적 특성)

  • Rho, Jae-Hyun;Shin, Sang-Sup;Huh, Joon;Lee, Jung-Han;Han, Sang-Yub
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.4
    • /
    • pp.24-36
    • /
    • 2014
  • The result of the research conducted for the purpose of investigating the semantic value and the layout of the Cheongryu Gugok of Dorimsa Valley, which exhibits a high level of completeness and scenic preservation value among the three gugoks distributed in the area around Mt. Dongak of Gogseong is as follows.4) The area around Cheongryu Gugok shows a case where the gugok culture, which has been enjoyed as a model of the Neo-Confucianism culture and bedrock scenery, such as waterfall, riverside, pond, and flatland, following the beautiful valley, has been actually substituted, and is an outstanding scenery site as stated in a local map of Gokseong-hyeon in 1872 as "Samnam Jeil Amban Gyeryu Cheongryu-dong(三南第一巖盤溪流 淸流洞: Cheongryu-dong, the best rock mooring in the Samnam area)." Cheongryu Gugok, which is differentiated through the seasonal scenery and epigrams established on both land route and waterway, was probably established by the lead of Sun-tae Jeong(丁舜泰, ?~1916) and Byeong-sun Cho(曺秉順, 1876~1921) before 1916 during the Japanese colonization period. However, based on the fact that a number of Janggugiso of ancient sages, such as political activists, Buddhist leaders, and Neo-Confucian scholars, have been established, it is presumed to have been utilized as a hermit site and scenery site visited by masters from long ago. Cheongryu Gugok, which is formed on the rock floor of the bed rock of Dorimsa Valley, is formed in a total length of 1.2km and average gok(曲) length of 149m on a mountain type stream, which appears to be shorter compared to other gugoks in Korea. The rock writings of the three gugoks in Mt. Dongak, such as Cheongryu Gugok, which was the only one verified in the Jeonnam area, total 165 in number, which is determined to be the assembly place for the highest number of rock writings in the nation. In particular, a result of analyzing the rock writings in Cheongryu Gugok totaling 112 places showed 49pieces(43.8%) with the meaning of 'moral training' in epigram, 21pieces (18.8%) of human life, 16pieces(14.2%) of seasonal scenery, and 12pieces(10.6%) of Janggugiso such as Jangguchur, and the ratio occupied by poem verses appeared to be six cases(3.6%). Sweyeonmun(鎖烟門), which was the first gok of land route, and Jesiinganbyeolyucheon(除是人間別有天) which was the ninth gok of the waterway, corresponds to the Hongdanyeonse(虹斷烟鎖) of the first gok and Jesiinganbyeolyucheon of the ninth gok established in Jaecheon, Chungbuk by Se-hwa Park(朴世和, 1834~1910), which is inferred to be the name of Gugok having the same origin. In addition, the Daeeunbyeong(大隱屛) of the sixth gok. of land route corresponds to the Chu Hsi's Wuyi-Gugok of the seventh gok, which is acknowledged as the basis for Gugok Wollim, and the rock writings and stonework of 'Amseojae(巖棲齋)' and 'Pogyeongjae(抱經齋)' between the seventh gok and eighth gok is a trace comparable with Wuyi Jeongsa(武夷精舍) placed below Wuyi Gugok Eunbyeon-bong, which is understood to be the activity base of Cheongryu-dong of the Giho Sarim(畿湖士林). The rock writings in the Mt. Dongak area, including famous sayings by masters such as Sunsaeuhje(鮮史御帝, Emperor Gojong), Bogahyowoo(保家孝友, Emperor Gojong), Manchunmungywol(萬川明月, King Joengjo), Biryeobudong(非禮不動, Chongzhen Emperor of the Ming Dynasty)', Samusa(思無邪, Euijong of the Ming Dynasty), Baksechungpwoong(百世淸風, Chu Hsi), and Chungryususuk-Dongakpungkyung(淸流水石 動樂風景, Heungseon Daewongun) can be said to be a repository of semantic symbolic cultural scenery, instead of only expressing Confucian aesthetics. In addition, Cheongryu Gugok is noticeable with its feature as a cluster of cultural scenery of the three religions of Confucian-Buddhism-Taoism, where the Confucianism value system, Buddhist concept, and Taoist concept co-exists for mind training and cultivation. Cheongryu Gugok has a semantic feature and spatial character as a basis for history and cultural struggle for the Anti-Japan spirit that has been conceived during the process of establishing and utilizing the spirit of the learning, loyalty for the Emperor and expulsion of barbarians, and inspiration of Anti-Japan force, by inheriting the sense of Dotong(道統) of Neo-Confucianism by the Confucian scholar class at the end of the Joseon era that is represented by Ik-hyun Choi(崔益鉉, 1833~1906), Woo Jeon(田愚, 1841~1922), Woo-man Gi(奇宇萬, 1846~1916), Byung-sun Song(宋秉璿, 1836~1905), and Hyeon Hwang(黃玹, 1855~1910).

Characteristics and classification of paddy soils on the Gimje-Mangyeong plains (김제만경평야(金堤萬頃平野)의 답토양특성(沓土壤特性)과 그 분류(分類)에 관(關)한 연구(硏究))

  • Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.5 no.2
    • /
    • pp.1-38
    • /
    • 1972
  • This study, designed to establish a classification system of paddy soils and suitability groups on productivity and management of paddy land based on soil characteristics, has been made for the paddy soils on the Gimje-Mangyeong plains. The morphological, physical and chemical properties of the 15 paddy soil series found on these plains are briefly as follows: Ten soil series (Baeggu, Bongnam, Buyong, Gimje, Gongdeog, Honam, Jeonbug, Jisan, Mangyeong and Suam) have a B horizon (cambic B), two soil series (Geugrag and Hwadong) have a Bt horizon (argillic B), and three soil series (Gwanghwal, Hwagye and Sindab) have no B or Bt horizons. Uniquely, both the Bongnam and Gongdeog series contain a muck layer in the lower part of subsoil. Four soil series (Baeggu, Gongdeog, Gwanghwal and Sindab) generally are bluish gray and dark gray, and eight soil series (Bongnam, Buyong, Gimje, Honam, Jeonbug, Jisan, Mangyeong and Suam) are either gray or grayish brown. Three soil series (Geugrag, Hwadong and Hwagye), however, are partially gleyed in the surface and subsurface, but have a yellowish brown to brown subsoil or substrata. Seven soil series (Bongnam, Buyong, Geugrag, Gimje, Gongdeog, Honam and Hwadong) are of fine clayey texture, three soil series (Baeggu, Jeonbug and Jisan) belong to fine loamy and fine silty, three soil series (Gwanghwal, Mangyeong and Suam) to coarse loamy and coarse silty, and two soil series (Hwagye and Sindab) to sandy and sandy skeletal texture classes. The carbon content of the surface soil ranges from 0.29 to 2.18 percent, mostly 1.0 to 2.0 percent. The total nitrogen content of the surface soil ranges from 0.03 to 0.25 percent, showing a tendency to decrease irregularly with depth. The C/N ratio in the surface soil ranges from 4.6 to 15.5, dominantly from 8 to 10. The C/N ratio in the subsoil and substrata, however, has a wide range from 3.0 to 20.25. The soil reaction ranges from 4.5 to 8.0. All soil series except the Gwanghwal and Mangyeong series belong to the acid reaction class. The cation exchange cpacity in the surface soil ranges from 5 to 13 milliequivalents per 100 grams of soil, and in all the subsoil and substrata except those of a sandy texture, from 10 to 20 milliequivalents per 100 grams of soil. The base saturation of the soil series except Baeggu and Gongdeog is more than 60 percent. The active iron content of the surface soil ranges from 0.45 to 1.81 ppm, easily-reduceable manganese from 15 to 148 ppm, and available silica from 36 to 366 ppm. The iron and manganese are generally accumulated in a similar position (10 to 70cm. depth), and silica occurs in the same horizon with that of iron and manganese, or in the deeper horizons in the soil profile. The properties of each soil series extending from the sea shore towards the continental plains change with distance and they are related with distance (x) as follows: y(surface soil, clay content) = $$-0.2491x^2+6.0388x-1.1251$$ y(subsoil or subsurface soil, clay content) = $$-0.31646x^2+7.84818x-2.50008$$ y(surface soil, organic carbon content) = $$-0.0089x^2+0.2192x+0.1366$$ y(subsoil or subsurface soil, pH) = $$-0.0178x^2-0.04534x+8.3531$$ Soil profile development, soil color, depositional and organic layers, soil texture and soil reaction etc. are thought to be the major items that should be considered in a paddy soil classification. It was found that most of the soils belonging to the moderately well, somewhat poorly and poorly drained fine and medium textured soils and moderately deep fine textured soils over coarse materials, produce higher paddy yields in excess of 3,750 kg/ha. and most of the soils belonging to the coarse textured soils, well drained fine textured soils, moderately deep medium textured soils over coarse materials and saline soils, produce yields less than 3,750kg/ha. Soil texture of the profile, available soil depth, salinity and gleying of the surface and subsurface soils etc. seem to be the major factors determining rice yields, and these factors are considered when establishing suitability groups for paddy land. The great group, group, subgroup, family and series are proposed for the classification categories of paddy soils. The soil series is the basic category of the classification. The argillic horizon (Bt horizon) and cambic horizon (B horizon) are proposed as two diagnostic horizons of great group level for the determination of the morphological properties of soils in the classification. The specific soil characteristics considered in the group and subgroup levels are soil color of the profile (bluish gray, gray or yellowish brown), salinity (salic), depositonal (fluvic) and muck layers (mucky), and gleying of surface and subsurface soils (gleyic). The family levels are classified on the basis of soil reaction, soil texture and gravel content of the profile. The definitions are given on each classification category, diagnostic horizons and specific soil characteristics respectively. The soils on these plains are classified in eight subgroups and examined under the existing classification system. Further, the suitability group, can be divided into two major categories, suitability class and subclass. The soils within a suitability class are similar in potential productivity and limitation on use and management. Class 1 through 4 are distinguished from each other by combination of soil characteristics. Subclasses are divided from classes that have the same kind of dominant limitations such as slope(e), wettness(w), sandy(s), gravels(g), salinity(t) and non-gleying of the surface and subsurface soils(n). The above suitability classes and subclasses are examined, and the definitions are given. Seven subclasses are found on these plains for paddy soils. The classification and suitability group of 15 paddy soil series on the Gimje-Mangyeong plains may now be tabulated as follows.

  • PDF