This article is concerned with asymmetric volatility models for financial time series. A generalization of standard single-threshold volatility model is discussed via multiple-threshold in which we specialize to twothreshold case for ease of presentation. An empirical illustration is made by analyzing S&P500 data from NYSE (New York Stock Exchange). For comparison measures between competing models, parametric bootstrap method is used to generate forecast distributions from which summary statistics of CP (Coverage Probability) and PE (Prediction Error) are obtained. It is demonstrated that our suggestion is useful in the field of asymmetric volatility analysis.
This empirical study is focused on practical application of Range-Based Volatility which is estimated by opening, high, low, closing price of overall asset. Especially proper forecasting period is what I want to know. There is four useful Range-Based Volatility(RV) such as Parkinson(1980; PK), Garman and Klass(1980; GK) Rogers and Satchell(1991; RS), Yang and Zhang(2008; YZ). So, four RV of KOPSI 200 index during 2000.5.22-2009.9.18 was used for empirical test. The emprirical result as follows. First, the best RV which shows the best forecasting performance is PK volatility among PK, GK, RS, YZ volatility. According to estimating period forcasting performance of RV shows delicate difference. PK has better performance in the period with financial crisis of sub-prime mortgage loan. if not, RS is better. Second, almost result shows better performance on forecasting volatility without sub-prime mortgage loan period. so we can say that forecasting performance is lower when historical volatiltiy is comparatively high. Finally, I find that longer estimating period in AR(1) and MA(1) model can reduce forecasting error. More interesting point is that the result shows rapid decrease form 60 days to 90 days and there is no more after 90 days. So, if we forecast the volatility using Range-Based volaility it is better to estimate with 90 trading period or over 90 days.
This study discusses the phenomenon behind various forms of macroeconomic volatility faced by countries in terms of industrial structure through empirical analysis, and in the process attempts to validate the role of the service industry. The analysis shows that economic fluctuations in Korea have been significantly improved, mainly due to the country risk. However, Korea is still exposed to the impact of external shocks, which is attributable to the manufacturing-centered industrial structure. Under such industrial structure, it is inevitable for the Korean economy to be continuously exposed to macroeconomic fluctuations caused by global sectoral shocks. So, in order to alleviate business fluctuations, it is necessary to enhance the role of non-tradable sectors that account for most of the service industry.
The Journal of Asian Finance, Economics and Business
/
v.9
no.3
/
pp.217-227
/
2022
Predicting return and volatility in the global Capital Market during a pandemic is challenging, and it is more difficult for a specific sector, particularly if that sector has a positive outlook. The goal of this research is to look at the impact of COVID-19 on the mean and volatility of the Information Technology Indexes of the best nine technology-driven countries based on return performance using an econometric GARCH model that is widely used. The daily returns of information technology indexes are evaluated for the same from November 2018 to February 2021. Data is taken from Yahoo Finance for CAC Tech (France), DAX Tech (Germany), FTSE All Tech (UK), KOPSI 200 IT (Korea), NIFTY IT (India), S&P 500 IT (US), S&P TSX (Canada), SSE_IT (China) and TOPIX17 (Japan). The results show daily positive mean returns for 8 countries' IT Indices and further, an uptrend in mean daily returns is observed in the crisis period for 6 countries' IT Indices. The exogenous variable COVID-19 which was taken as a regressor for the GARCH model was found to be positively significant for IT indices of all the countries. The overall results confirm the presence of the mean-reverting phenomenon for IT indices of all the countries.
This study is to investigate the dynamic relationship between international capital flows and won exchange rate to the major currency in Korea. As the results of Granger causality test, international capital flows Granger-cause currency rate volatility in the short term. However, over time, won exchange rate volatility Granger-cause international capital flows in Korea. According to the results by period divided based on 2008 financial crisis, international capital flows have the significant effects on won-dollar exchange rate volatility before 2008 crisis although currency rate volatility Granger-cause international capital flows after the crisis. As the results of impulse-response function of the basis of VAR, foreign exchange rate volatility has no connection with international capital flows before the crisis while it doesn't after. After the crisis, currency rate volatility has promoted international capital flows, while its influence diminishes as time passes. As these results, the uncertainty of foreign exchange market tend to influence the international capital flows rather than vice versa in Korea. Thus, it would be a more effective policy to control the uncertainty of market than the direct restrictions international capital flows.
Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.
Ji, Hyunho;Kim, Taehyoung;Lim, Jeongtaek;Ham, Kyung Sun
Journal of Internet Computing and Services
/
v.22
no.6
/
pp.17-24
/
2021
The use of renewable energy sources for power generation has been steadily increasing. Power generation using renewable energy has the advantage of not generating carbon but has the disadvantage of high volatility depending on the weather. This volatility makes stable power supply difficult. Curtailment is occurring to address volatility. Various facilities are operated together to solve the loss caused by the curtailment. The existing SCADA must be modified for turbine control reflecting the conditions of various facilities. However, since it is difficult to modify SCADA, a modular control system is required. In this study, we propose Modular Control System Based on Closed-Loop Control for Wind Farms. Since the control logic can be changed without modifying SCADA, it is easy to respond to changes. The developed modular control system was evaluated as a lab test and confirmed to operate smoothly. Through future research, the experiment will be conducted by applying a modular control system to the actual wind farm.
The heterogeneous autoregressive (HAR) model is a simple linear model that is commonly used to explain long memory in the realized volatility. However, as realized volatility has more complicated features such as conditional heteroscedasticity, leverage effect, and volatility clustering, it is necessary to extend the simple HAR model. Therefore, to better incorporate the stylized facts, we propose a threshold HAR model with GARCH errors, namely the THAR-GARCH model. That is, the THAR-GARCH model is a nonlinear model whose coefficients vary according to a threshold value, and the conditional heteroscedasticity is explained through the GARCH errors. Model parameters are estimated using an iterative weighted least squares estimation method. Our simulation study supports the consistency of the iterative estimation method. In addition, we show that the proposed THAR-GARCH model has better forecasting power by applying to the realized volatility of major 21 stock indices around the world.
This study examined the structural changes and volatility in the global stock markets using a Markov Regime Switching ARCH model developed by the Hamilton and Susmel (1994). Firstly, the US, Italy and Ireland showed that variance in the high volatility regime was more than five times that in the low volatility, while Korea, Russia, India, and Greece exhibited that variance in the high volatility regime was increased more than eight times that in the low. On average, a jump from regime 1 to regime 2 implied roughly three times increased in risk, while the risk during regime 3 was up to almost thirteen times than during regime 1 over the study period. And Korea, the US, India, Italy showed ARCH(1) and ARCH(2) effects, leverage and asymmetric effects. Secondly, 278 days were estimated in the persistence of low volatility regime, indicating that the mean transition probability between volatilities exhibited the highest long-term persistence in Korea. Thirdly, the coefficients appeared to be unstable structural changes and volatility for the stock markets in Chow tests during the Asian, Global and European financial crisis. In addition, 1-Step prediction error tests showed that stock markets were unstable during the Asian crisis of 1997-1998 except for Russia, and the Global crisis of 2007-2008 except for Korea and the European crisis of 2010-2011 except for Korea, the US, Russia and India. N-Step tests exhibited that most of stock markets were unstable during the Asian and Global crisis. There was little change in the Asian crisis in CUSUM tests, while stock markets were stable until the late 2000s except for some countries. Also there were stable and unstable stock markets mixed across countries in CUSUMSQ test during the crises. Fourthly, I confirmed a close relevance of the volatility between Korea and other countries in the stock markets through the likelihood ratio tests. Accordingly, I have identified the episode or events that generated the high volatility in the stock markets for the financial crisis, and for all seven stock markets the significant switch between the volatility regimes implied a considerable change in the market risk. It appeared that the high stock market volatility was related with business recession at the beginning in 1990s. By closely examining the history of political and economical events in the global countries, I found that the results of Lamoureux and Lastrapes (1990) were consistent with those of this paper, indicating there were the structural changes and volatility during the crises and specificly every high volatility regime in SWARCH-L(3,2) student t-model was accompanied by some important policy changes or financial crises in countries or other critical events in the international economy. The sophisticated nonlinear models are needed to further analysis.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.6
/
pp.212-217
/
2020
The purpose of this study was to analyze the volatility and properties of a time series for tangerine prices in Jeju using the GARCH model of Bollerslev(1986). First, it was found that the time series for the rate of change in tangerine prices had a thicker tail rather than a normal distribution. At a significance level of 1%, the Jarque-Bera statistic led to a rejection of the null hypothesis that the distribution of the time series for the rate of change in tangerine prices is normally distributed. Second, the correlation between the time series was high based on the Ljung-Box Q statistic, which was statistically verified through the ARCH-LM test. Third, the results of the GARCH(1,1) model estimation showed statistically significant results at a significance level of 1%, except for the constant of the mean equation. The persistence parameter value of the variance equation was estimated to be close to 1, which means that there is a high possibility that a similar level of volatility will be present in the future. Finally, it is expected that the results of this study can be used as basic data to optimize the government's tangerine supply and demand control policy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.