• Title/Summary/Keyword: IT

Search Result 396,548, Processing Time 0.293 seconds

Development of a PTV Algorithm for Measuring Sediment-Laden Flows (유사 흐름 측정을 위한 입자추적유속계 알고리듬의 개발)

  • Yu, Kwon-Kyu;Muste, Marian;Ettema, Robert;Yoon, Byung-Man
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.841-849
    • /
    • 2005
  • Two-phase flows, e.g. sediment-laden flow and bubbly flow, have two different flow profiles; flow velocity and sediment velocity. To measure velocity distributions of two-phase flows, it is necessary to use sophisticated instruments which can separate velocity profiles of two-phases. For bubbly flows, PIV (Particle Image Velocimetry) or PTV (Particle Tracking Velocimetry) has given fairly good velocity profiles of two-phases. However, for sediment-laden flows, the applications of PIV or PTV has not been so successful, because the sediment particles introduced to the flow kept the images from being analyzed. A new algorithm, which consists of several image analysis methods, is proposed to analyze sediment-laden flows. For detection algorithm, threshold method, edge detection method, and thinning method are adapted, and for finding matching pair PIV and PTV routines are combined. The proposed method can (1) detect sediment particles with irregular boundaries, (2) remove reflected images and scattered images, and (3) discriminate tracer particles from reflected images of sediment particles.

Numerical Investigation of Turbulence Structure and Suspended Sediment Transport in Vegetated Open-Channel Flows (식생된 개수로에서 난류 구조와 부유사 이동 현상의 수치해석)

  • Gang, Hyeong-Sik;Choe, Seong-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.581-592
    • /
    • 2000
  • Turbulence structure and suspended sediment transport capacity in vegetated open-channel flows are investigated numerically in the present paper. The $\textsc{k}-\;\varepsilon$ model is employed for the turbulence closure. Mean velocity and turbulence characteristics including turbulence intensity, Reynolds stress, and production and dissipation of turbulence kinetic energy are evaluated and compared with measurement data available in the literature. The numerical results show that mean velocity is diminished due to the drag provided by vegetation, which results in the reduction of turbulence intensity and Reynolds stress. For submerged vegetation, the shear at the top of vegetation dominates turbulence production, and the turbulence production within vegetation is characterized by wakes. For emergent condition, it is observed that the turbulence generation is dominated by wakes within vegetation. In general, simulated profiles compares favorably to measured data. Computed values of eddy viscosity are used to solve the conservation equation for suspended sediment, yielding sediment concentration more uniform over the depth compared with the one in the plain channel. The simulation reveals that the suspended load decreases as the vegetation density increases and the suspended load increases as the particle diameter decreases for the same vegetation density.

  • PDF

An Investigation of the Recurrence Possibility of Long Dry Periods shown in the Annual Rainfall Data at Seoul (서울지점 연강수량 자료에 나타난 장기 건주기의 재현 가능성에 관한 고찰)

  • Yu, Cheol-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.519-526
    • /
    • 2000
  • This study is to investigate the recurrence possibility of consecutive dry years such as the long dry period around 1900 in the annual rainfall data at Seoul station. The truncation levels, as the criterion for the dry years, are decided such as to make the occurrence of dry years follow the Poissonian distribution, which assures independent occurrence of dry years. For the truncation level of mean-0.5stdv, the occurrence of dry years is found to satisfy the Poissonian distribution weakly with 99% significance level, but for those of mean-0.75stdv and mean-stdv with 95% significance level. For these truncation levels, the long dry period around 1900 is divided into several short consecutive dry years. The Poisson process has then been applied to derive the occurrence probability of consecutive dry years. For the truncation level of mean-0.75stdv or below, the Poisson process was found to reproduce similar occurrence probabilities to the observed. Especially for the lowest truncation level used in the study (mean-stdv), we could see that the occurrence probability of consecutive dry years estimated for the data collected before the long dry period around 1900 was higher that those for the data collected after the long dry period, thus, it could be concluded that the possibility of long dry periods is decreasing recently.cently.

  • PDF

Oxygen Plasma Effect on AlGaN/GaN HEMTs Structure Grown on Si Substrate

  • Seo, Dong Hyeok;Kang, Sung Min;Lee, Dong Wha;Ahn, Du Jin;Park, Hee Bin;Ahn, Youn Jun;Kim, Min Soo;Kim, Yu Kyeong;Lee, Ho Jae;Song, Dong Hun;Kim, Jae Hee;Bae, Jin Su;Cho, Hoon Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.420-420
    • /
    • 2013
  • We investigated oxygen plasma effect on defect states near the interface of AlGaN/GaN High Electron Mobility Transistor (HEMT) structure grown on a silicon substrate. After the plasma treatment, electrical properties were evaluated using a frequency dependant Capacitance-Voltage (C-V) and a temperature dependant C-V measurements, and a deep level transient spectroscopy (DLTS) method to study the change of defect densities. In the depth profile resulted from the temperature dependant C-V, a sudden decrease in the carrier concentration for two-dimensional electron gas (2DEG) nearby 250 K was observed. In C-V measurement, the interface states were improved in case of the oxygen-plasma treated samples, whereas the interface was degraded in case of the nitrogen-plasma treated sample. In the DLTS measurement, it was observed the two kinds of defects well known in AlGaN/GaN structure grown on sapphire substrate, which have the activation energies of 0.15 eV, 0.25 eV below the conduction band. We speculate that this defect state in AlGaN/GaN on the silicon substrate is caused from the decrease in 2DEG's carrier concentrations. We compared the various DLTS signals with filling pulse times to identify the characteristics of the newly found defect. In the filling pulse time range under the 80 us, the activation energies changed as the potential barrier model. On the other hand, in the filling pulse time range above the 80 us, the activation energies changed as the extended potential model. Therefore, we suggest that the found defect in the AlGaN/GaN/Si structure could be the extended defect related with AlGa/N/GaN interface states.

  • PDF

Adhesion Layer 사용으로 인한 Si Thin Film Anode 전극의 신뢰성 향상

  • O, Min-Seop;Song, Yeong-Hak;U, Chang-Su;Jeong, Jun-Ho;Hyeon, Seung-Min;Lee, Hu-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.681-682
    • /
    • 2013
  • 전기는 우리 주변의 에너지 형태 중에서 가장 편리하고 광범위하게 사용되고 있다. 이러한 전기는 전자제품, 전기자동차, 에너지 저장 플랜트 등 매우 많은 분야에서 저장되고 사용되고 있다. 특히 에너지 저장 용량의 확대는 휴대폰, 노트북 PC 등 휴대용 IT 기기의 성장에 결정적인 역할을 하였다. 가볍고 작으면서도 고용량의 전기 에너지 저장 장치가 없었다면, 통신이나 인터넷 그리고 오락 등 다양한 기능을 작은 휴대용 기기에 구현할 수 없었을 것이다. 그러나 시간이 흐를수록 기기의 요구 성능이 높아지고 소비자의 니즈가 더욱더 다양해지고 고도화될수록 단일 부품으로 가장 큰 부피를 차지하는 에너지 저장 장치의 용량과 디자인은 점점 중요해지고 있다. 이러한 에너지 저장 장치에서 가장 친숙한 형태는 2차 전지 계열이다. 납 축전지를 비롯하여, 니켈수소, 니켈카드뮴, electrochemical capacitor와 Li ion 계열 등이 대표적이다. 특히 Li ion 배터리는 모바일, 자동차 및 에너지 저장 그리드 등과 같은 다양한 분야에 가장 많이 적용되고있다. Li ion 배터리에 대하여 현재의 핵심적인 연구분야는 전극 재료(cathode, anode)와 electrolyte에 대한 것이다. Anode 전극 재료 중에서 가장 많이 사용되는 재료는 카본을 기반으로 하는 재료로 안정성에 대한 장점이 있지만 에너지 밀도가 낮다는 단점이 있다. 에너지 저장 용량 증가에 대한 필요성이 증가하기 때문에 현재 많이 사용되고 있는 에너지 밀도가 낮은 카본 재료를 대체하기 위해서 이론 용량이 높다고 알려진 실리콘과 같은 메탈이나 주석 산화물과 같은 천이 금속 산화물에 대하여 많은 연구가 진행되고 있다. 특히 현재까지 알려진 많은 재료 중에서 가장 큰 capacity (~4,000 mAh/g)를 가지고 있다고 알려진 실리콘이 카본의 대체 재료로 많은 연구가 진행되고 있다. 그러나, Li 과 반응을 하며 약 300~400%에 달하는 부피팽창이 발생하고, 이러한 부피 팽창 때문에 충 방전이 진행됨에 따라 current collector로부터 박리되는 현상을 보여 빠른 용량 감소를 보여주고 있다. 본 연구에서는 adhesion layer를 current collector와 실리콘 전극 재료 사이에 삽입하여 충 방전 시 부피팽창에 의한 미세구조의 변화와 electrochemical 특성에 대한 영향을 알아보았다. 실험에 사용한 anode 전극은 상용 Cu foil current collector에 RF/DC magnetron 스퍼터링을 통해 다양한 종류(Ti, Ta 등)의 adhesion layer과 200 nm 두께의 Si 박막을 증착하였다. 또한 Bio-logic Potentiostat/ Galvanostat VMP3 와 WanAtech automatic battery cycler 장비를 사용하여 0.2 C-rate로 half-cell 타입의 코인 셀로 조립한 전극에 대한 충 방전 실험을 진행하였다. Adhesion layer의 사용으로 인해 실리콘 박막과 Cu current collector 사이의 박리 현상을 줄여줄 수 있었고, 충 방전 시 Cu 원자의 실리콘 박막으로의 확산을 통한 brittle한 Cu-Si alloy 형성을 막아 줄 수 있어 큰 특성 향상을 확인할 수 있었다. 또한, 리튬과 실리콘의 반응을 통한 형태와 미세구조 변화를 SEM, TEM 등의 다양한 장비를 사용하여 확인하였고, 이를 통해 adhesion layer의 사용이 전극의 특성향상에 큰 영향을 끼쳤다는 것을 확인할 수 있었다.

  • PDF

A Study on the Critical Duration of Design Rainfall in Midsize Catchment (중규모 하천유역에서 설계강우의 임계지속기간에 관한 연구)

  • Park, Jong-Young;Shin, Chang-Dong;Lee, Jung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.9
    • /
    • pp.695-706
    • /
    • 2004
  • This study is to propose the temporal pattern of design rainfall which causes maximum peak discharge, and to analyze the relation of catchment characteristics and critical durations for gauged midsize catchment. Hydrologic analysis has done over the 44 midsize catchments with 50-5,000$\textrm{km}^2$. The type of temporal pattern of design rainfall which causes maximum peak discharge has resulted in Huff's 4 quartile distribution method for effective rainfall(AMC III) The peak discharges of 24hr rainfall duration are similar to those of critical duration for 50-600$\textrm{km}^2$, and the peak discharges of 48hr rainfall duration are similar to those of critical duration for 600-5,000$\textrm{km}^2$. Therefore, if the proper rainfall intensity formula is selected, 24hr or 48hr rainfall duration may be regarded as the critical duration of midsize catchment. A simple regression equation is derived by using a catchment area and critical duration with high correlation for the case of effective rainfall(AMC III). Therefore, it can be used to determine the critical duration of ungauged catchment with 50-5,000$\textrm{km}^2$. Also, dimensionless regression equation is derived by using characteristic values of unit hydrograph.

W 도핑된 ZnO 박막을 이용한 저항 변화 메모리 특성 연구

  • Park, So-Yeon;Song, Min-Yeong;Hong, Seok-Man;Kim, Hui-Dong;An, Ho-Myeong;Kim, Tae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.410-410
    • /
    • 2013
  • Next-generation nonvolatile memory (NVM) has attracted increasing attention about emerging NVMs such as ferroelectric random access memory, phase-change random access memory, magnetic random access memory and resistance random access memory (RRAM). Previous studies have demonstrated that RRAM is promising because of its excellent properties, including simple structure, high speed and high density integration. Many research groups have reported a lot of metal oxides as resistive materials like TiO2, NiO, SrTiO3 and ZnO [1]. Among them, the ZnO-based film is one of the most promising materials for RRAM because of its good switching characteristics, reliability and high transparency [2]. However, in many studies about ZnO-based RRAMs, there was a problem to get lower current level for reducing the operating power dissipation and improving the device reliability such an endurance and an retention time of memory devices. Thus in this paper, we investigated that highly reproducible bipolar resistive switching characteristics of W doped ZnO RRAM device and it showed low resistive switching current level and large ON/OFF ratio. This may be caused by the interdiffusion of the W atoms in the ZnO film, whch serves as dopants, and leakage current would rise resulting in the lowering of current level [3]. In this work, a ZnO film and W doped ZnO film were fabricated on a Si substrate using RF magnetron sputtering from ZnO and W targets at room temperature with Ar gas ambient, and compared their current levels. Compared with the conventional ZnO-based RRAM, the W doped ZnO ReRAM device shows the reduction of reset current from ~$10^{-6}$ A to ~$10^{-9}$ A and large ON/OFF ratio of ~$10^3$ along with self-rectifying characteristic as shown in Fig. 1. In addition, we observed good endurance of $10^3$ times and retention time of $10^4$ s in the W doped ZnO ReRAM device. With this advantageous characteristics, W doped ZnO thin film device is a promising candidates for CMOS compatible and high-density RRAM devices.

  • PDF

Sewer CCTV Inspection Prioritization Based on Risk Assessment (위험도 기반의 하수관로 CCTV 조사 우선순위 결정 연구)

  • Son, Jooyoung;Lee, Jaehyun;Oh, Jeill
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.585-592
    • /
    • 2017
  • Most sewer lines buried in the city are likely to be collapsed due to serious aging. Also, due to the high concentration of development and high population density and traffic, the collapse of the sewer will cause enormous social and economic damage. Therefore, proactive maintenance is required to prevent accidents caused by deteriorated sewer pipe. In order to utilize limited budget effectively, risk-based prioritization methods should be proposed that simultaneously consider the consequence of failure and the probability of failure. In this study, the method of risk-based prioritization of sewer was examined by reviewing various cases of overseas studies and applied to the urban sub-catchment. First, the impact factors that can be secured through the sewer GIS DB in Seoul were derived, and the weight, sub-criteria, and impact score of each impact factor were determined and the consequence of failure was calculated by weight sum method. In addition, the probability of failure was calculated by dividing the service life by the estimated useful life, and the consequence of failure and the probability of failure were classified into five grades by the Jenks natural breaks classification method. The prioritization method was applied to sub-catchment in the Seoul to derive a risk matrix and a risk grade. As a result, 26% of all subjects were selected as the inspection priority subjects with 4-5 risk grade. Therefore, using the risk-based CCTV prioritization methodology, it will be possible to systematically determine the objects that need investigation first.

Validation of Complementary Relationship Hypothesis for Evapotranspiration in Multipurpose Dam Basins (다목적댐유역에서의 증발산 보완관계가설 검증)

  • Kim, Jihoon;Kang, Boosik;Kim, Jin-Gyeom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.549-559
    • /
    • 2017
  • The complementary relationship hypothesis for areal evapotranspirations was validated in the regional-scale area of multipurpose dam basins in Korea and the long-term water balances were indirectly identified. Annual actual evapotranspiration ($ET_A$) was assumed the difference between total annual precipitation and total annual inflow and the available moisture was assumed the total precipitation. The seasonally varying pan coefficient (kp) is estimated as the ratio of the $ET_{pan}$ and the evapotranspiration calculated by FAO Penman-Monteith equation ($ET_{PM}$). The complementary relationships using ground observation data of $ET_P$ and $ET_A$ in the multipurpose dam basins follow generally the typical pattern that $ET_P$ and $ET_A$ is complementary and converges to equivalent evapotranspiration ($ET_W$) under the extreme wet environment. However, $ET_A$ of Juam dam was estimated relatively greater than other basins and exceeds even $ET_P$ at certain range with high moisture availability, which can be understood as the results of possible over-estimation of precipitation or under-estimation of dam inflow. It is expected that the use of evapotranspiration complementary relationship for validating hydrological water balances will contribute to controlling uncertainties in estimating dam inflows during flood season in particular.

An Estimation of Appropriate Standby Space for Mechanical Parking Lot by Prediction of Parking Queue (주차대기행렬 예측을 통한 기계식 주차장 적정 대기규모 산정에 관한 연구)

  • Jin, Tae-Hee;Park, Je-Jin;Park, Jin-Man;Ha, Tae-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.321-330
    • /
    • 2020
  • The purpose of this study is to present the appropriate standby space for the mechanical parking lot considered parking queue. This analysis is based on the field-study by results of the influential factors on the parking queue of mechanical parking lots in the commercial area of Gwang-ju metropolitan city. In this study, the parking queue was analized through the simple modeling using Vissim based on average service rate and average arrival rate from the result of field-study. As a result of applying the field survey products to the theoretical queue model, no significant result was obtained when the traffic intensity exceeded 1. Therefore, parking queue was analyzed through simple modeling using Vissim, and the model for calculating the proper parking queue size of the mechanical parking lot by size was derived. The model for estimating of an appropriate mechanical parking standby space considering parking queue presented in this study is expected to be a criterion for considering the appropriate parking space of a new building, and also it can be used to minimized the traffic impact due to the parking queue by the lack of standby space.