• Title/Summary/Keyword: IT산업 전략

Search Result 2,107, Processing Time 0.028 seconds

A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

  • Kim, Hyung Su;Hong, Seung Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.111-126
    • /
    • 2020
  • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.

Physicochemical Properties of Pearl Oyster Muscle and Adductor Muscle as Pearl Processing Byproducts (진주 가공부산물(육 및 패주)의 이화학적 특성)

  • Kim, Jin-Soo;Kim, Hye-Suk;Oh, Hyeun-Seok;Kang, Kyung-Tae;Han, Gang-Uk;Kim, In-Soo;Jeong, Bo-Young;Moon, Soo-Kyung;Heu, Min-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.4
    • /
    • pp.464-469
    • /
    • 2006
  • This study was conducted to evaluate a knowledge on food components of muscle and adductor muscle of pearl oyster (Pinctada fucata martensii) as pearl processing byproducts. The concentrations of mercury and chromium as heavy metal were not detected in both pearl oyster muscle and adductor muscle, and those of cadmium and lead were 0.06 ppm and 0.11 ppm in only pearl oyster muscle, respectively. Thus, the heavy metal levels of pearl processing byproducts were below the reported safety limits. The volatile basic nitrogen (VBN) content and pH of pearl oyster muscle were 11.6 mg/100g and 6.31 and those of abductor muscle were 8.6 mg/100 g and 6.33, respectively. It was concluded that pearl oyster muscle and adductor muscle might not invoke health risk in using food resource. The contents of crude protein (16.5%) and total amino acid (15,691 mg/100 g) of adductor muscle were higher than those of muscle (11.2% and 10,131 mg/100 g) and oyster (12.1% and 11,213 mg/100 g) as a control. The contents of calcium and phosphorus were 95.4 mg/100 g and 116.0 mg/100 g in muscle, 75.2 mg/100g and 148.1 mg/100 g in adductor muscle, respectively. The calcium level based on phosphorus was a good ratio for absorbing calcium. The free amino acid contents and taste values were 635.5 mg/100 g and 40.2 in muscle, and 734.9 mg/100 g and 24.1 in adductor muscle, respectively, but that (882.8 mg/100 g and 40.2) of oyster was higher than those of pearl processing byproducts. Based on the results of physicochemical and nutritional properties, pearl oyster muscle and adductor muscle can be utilized as a food resource.

Rough Set Analysis for Stock Market Timing (러프집합분석을 이용한 매매시점 결정)

  • Huh, Jin-Nyung;Kim, Kyoung-Jae;Han, In-Goo
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.77-97
    • /
    • 2010
  • Market timing is an investment strategy which is used for obtaining excessive return from financial market. In general, detection of market timing means determining when to buy and sell to get excess return from trading. In many market timing systems, trading rules have been used as an engine to generate signals for trade. On the other hand, some researchers proposed the rough set analysis as a proper tool for market timing because it does not generate a signal for trade when the pattern of the market is uncertain by using the control function. The data for the rough set analysis should be discretized of numeric value because the rough set only accepts categorical data for analysis. Discretization searches for proper "cuts" for numeric data that determine intervals. All values that lie within each interval are transformed into same value. In general, there are four methods for data discretization in rough set analysis including equal frequency scaling, expert's knowledge-based discretization, minimum entropy scaling, and na$\ddot{i}$ve and Boolean reasoning-based discretization. Equal frequency scaling fixes a number of intervals and examines the histogram of each variable, then determines cuts so that approximately the same number of samples fall into each of the intervals. Expert's knowledge-based discretization determines cuts according to knowledge of domain experts through literature review or interview with experts. Minimum entropy scaling implements the algorithm based on recursively partitioning the value set of each variable so that a local measure of entropy is optimized. Na$\ddot{i}$ve and Booleanreasoning-based discretization searches categorical values by using Na$\ddot{i}$ve scaling the data, then finds the optimized dicretization thresholds through Boolean reasoning. Although the rough set analysis is promising for market timing, there is little research on the impact of the various data discretization methods on performance from trading using the rough set analysis. In this study, we compare stock market timing models using rough set analysis with various data discretization methods. The research data used in this study are the KOSPI 200 from May 1996 to October 1998. KOSPI 200 is the underlying index of the KOSPI 200 futures which is the first derivative instrument in the Korean stock market. The KOSPI 200 is a market value weighted index which consists of 200 stocks selected by criteria on liquidity and their status in corresponding industry including manufacturing, construction, communication, electricity and gas, distribution and services, and financing. The total number of samples is 660 trading days. In addition, this study uses popular technical indicators as independent variables. The experimental results show that the most profitable method for the training sample is the na$\ddot{i}$ve and Boolean reasoning but the expert's knowledge-based discretization is the most profitable method for the validation sample. In addition, the expert's knowledge-based discretization produced robust performance for both of training and validation sample. We also compared rough set analysis and decision tree. This study experimented C4.5 for the comparison purpose. The results show that rough set analysis with expert's knowledge-based discretization produced more profitable rules than C4.5.

Open Digital Textbook for Smart Education (스마트교육을 위한 오픈 디지털교과서)

  • Koo, Young-Il;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.177-189
    • /
    • 2013
  • In Smart Education, the roles of digital textbook is very important as face-to-face media to learners. The standardization of digital textbook will promote the industrialization of digital textbook for contents providers and distributers as well as learner and instructors. In this study, the following three objectives-oriented digital textbooks are looking for ways to standardize. (1) digital textbooks should undertake the role of the media for blended learning which supports on-off classes, should be operating on common EPUB viewer without special dedicated viewer, should utilize the existing framework of the e-learning learning contents and learning management. The reason to consider the EPUB as the standard for digital textbooks is that digital textbooks don't need to specify antoher standard for the form of books, and can take advantage od industrial base with EPUB standards-rich content and distribution structure (2) digital textbooks should provide a low-cost open market service that are currently available as the standard open software (3) To provide appropriate learning feedback information to students, digital textbooks should provide a foundation which accumulates and manages all the learning activity information according to standard infrastructure for educational Big Data processing. In this study, the digital textbook in a smart education environment was referred to open digital textbook. The components of open digital textbooks service framework are (1) digital textbook terminals such as smart pad, smart TVs, smart phones, PC, etc., (2) digital textbooks platform to show and perform digital contents on digital textbook terminals, (3) learning contents repository, which exist on the cloud, maintains accredited learning, (4) App Store providing and distributing secondary learning contents and learning tools by learning contents developing companies, and (5) LMS as a learning support/management tool which on-site class teacher use for creating classroom instruction materials. In addition, locating all of the hardware and software implement a smart education service within the cloud must have take advantage of the cloud computing for efficient management and reducing expense. The open digital textbooks of smart education is consdered as providing e-book style interface of LMS to learners. In open digital textbooks, the representation of text, image, audio, video, equations, etc. is basic function. But painting, writing, problem solving, etc are beyond the capabilities of a simple e-book. The Communication of teacher-to-student, learner-to-learnert, tems-to-team is required by using the open digital textbook. To represent student demographics, portfolio information, and class information, the standard used in e-learning is desirable. To process learner tracking information about the activities of the learner for LMS(Learning Management System), open digital textbook must have the recording function and the commnincating function with LMS. DRM is a function for protecting various copyright. Currently DRMs of e-boook are controlled by the corresponding book viewer. If open digital textbook admitt DRM that is used in a variety of different DRM standards of various e-book viewer, the implementation of redundant features can be avoided. Security/privacy functions are required to protect information about the study or instruction from a third party UDL (Universal Design for Learning) is learning support function for those with disabilities have difficulty in learning courses. The open digital textbook, which is based on E-book standard EPUB 3.0, must (1) record the learning activity log information, and (2) communicate with the server to support the learning activity. While the recording function and the communication function, which is not determined on current standards, is implemented as a JavaScript and is utilized in the current EPUB 3.0 viewer, ths strategy of proposing such recording and communication functions as the next generation of e-book standard, or special standard (EPUB 3.0 for education) is needed. Future research in this study will implement open source program with the proposed open digital textbook standard and present a new educational services including Big Data analysis.

A Study on the Influence of the Selective Attributes of Home Meal Replacement on Perceived Utilitarian Value and Repurchase Intention: Focus on Consumers of Large Discount and Department Stores (HMR(Home Meal Replacement) 선택속성이 지각된 효용적 가치, 재구매 의도에 미치는 영향에 관한 연구: 대형 할인마트와 백화점 구매고객을 대상으로)

  • Seo, Kyung-Hwa;Choi, Won-Sik;Lee, Soo-Bum
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.21 no.6
    • /
    • pp.934-947
    • /
    • 2011
  • The purpose of this study is to analyze products for good taste and convenience, which become an engine to constantly create customers. In addition, this study is aimed at investigating the relationship between the selective attributes of Home Meal Replacement, the perceived utilitarian value, and the repurchase intention, and drawing new suggestions on the Home Meal Replacement market from a new marketing perspective. Based on a total of 215 samples, this study reviewed the reliability and fitness of the research model and verified a total of 5 hypothesized using the Amos program. The result of study modeling was GFI=0.905, AGFI=0.849, NFI=0.889, CFI=0.945, and RMR=0.0.092 at the level of $x^2$=230.22 (df=126, p<0.001). First, the food quality (${\beta}$=0.221), convenience (${\beta}$=0.334), packing (${\beta}$=0.278), and employee service (${\beta}$=0.204) of home meal replacement consideration attributes had a positive (+) influence on perceived utilitarian value. Second, perceived utilitarian value (${\beta}$=0.584) had a positive (+) influence on repurchase intention. The factors to differentiate one company from other competitors in terms of the utilitarian value are the quality of food, convenience, wrapping, and services by employees. This study has illustrated the need to focus on the development of a premium menu to compete with other companies and to continue to research and develop nutritious foods that are easy to cook. Moreover, the key factors to have a distinct and constant competitive edge over other companies are the alleviation of consumer anxiety over wrapping container materials, the development of more designs, and the accumulation of service know-how. Therefore, it is necessary for a company to strongly develop the key factors based on its resources as a core capability.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

A Study on the Effect of Technological Innovation Capability and Technology Commercialization Capability on Business Performance in SMEs of Korea (우리나라 중소기업의 기술혁신능력과 기술사업화능력이 경영성과에 미치는 영향연구)

  • Lee, Dongsuk;Chung, Lakchae
    • Korean small business review
    • /
    • v.32 no.1
    • /
    • pp.65-87
    • /
    • 2010
  • With the advent of knowledge-based society, the revitalization of technological innovation type SMEs, termed "inno-biz" hereafter, has been globally recognized as a government policymakers' primary concern in strengthening national competitiveness, and much effort is being put into establishing polices of boosting the start-ups and innovation capability of SMEs. Especially, in that the inno-biz enables national economy to get vitalized by widening world markets with its superior technology, and thus, taking the initiative of extremely competitive world markets, its growth and development has greater significance. In the case of Korea, the government has been maintaining the policies since the late 1990s of stimulating the growth of SMEs as well as building various infrastructures to foster the start-ups of the SMEs such as venture businesses with high technology. In addition, since the enactment of "Innovation Promotion Law for SMEs" in 2001, the government has been accelerating the policies of prioritizing the growth and development of inno-biz. So, for the sound growth and development of Korean inno-biz, this paper intends to offer effective management strategies for SMEs and suggest proper policies for the government, by researching into the effect of technological innovation capability and technology commercialization capability as the primary business resources on business performance in Korean SMEs in the light of market information orientation. The research is carried out on Korean companies characterized as inno-biz. On the basis of OSLO manual and prior studies, the research categorizes their status. R&D capability, technology accumulation capability and technological innovation system are categorized into technological innovation capability; product development capability, manufacturing capability and marketing capability into technology commercialization capability; and increase in product competitiveness and merits for new technology and/or product development into business performance. Then the effect of each component on business performance is substantially analyzed. In addition, the mediation effect of technological innovation and technology commercialization capability on business performance is observed by the use of the market information orientation as a parameter. The following hypotheses are proposed. H1 : Technology innovation capability will positively influence business performance. H1-1 : R&D capability will positively influence product competitiveness. H1-2 : R&D capability will positively influence merits for new technology and/or product development into business performance. H1-3 : Technology accumulation capability will positively influence product competitiveness. H1-4 : Technology accumulation capability will positively influence merits for new technology and/or product development into business performance. H1-5 : Technological innovation system will positively influence product competitiveness. H1-6 : Technological innovation system will positively influence merits for new technology and/or product development into business performance. H2 : Technology commercializing capability will positively influence business performance. H2-1 : Product development capability will positively influence product competitiveness. H2-2 : Product development capability will positively influence merits for new technology and/or product development into business performance. H2-3 : Manufacturing capability will positively influence product competitiveness. H2-4 : Manufacturing capability will positively influence merits for new technology and/or product development into business performance. H2-5 : Marketing capability will positively influence product competitiveness. H2-6 : Marketing capability will positively influence merits for new technology and/or product development into business performance. H3 : Technology innovation capability will positively influence market information orientation. H3-1 : R&D capability will positively influence information generation. H3-2 : R&D capability will positively influence information diffusion. H3-3 : R&D capability will positively influence information response. H3-4 : Technology accumulation capability will positively influence information generation. H3-5 : Technology accumulation capability will positively influence information diffusion. H3-6 : Technology accumulation capability will positively influence information response. H3-7 : Technological innovation system will positively influence information generation. H3-8 : Technological innovation system will positively influence information diffusion. H3-9 : Technological innovation system will positively influence information response. H4 : Technology commercialization capability will positively influence market information orientation. H4-1 : Product development capability will positively influence information generation. H4-2 : Product development capability will positively influence information diffusion. H4-3 : Product development capability will positively influence information response. H4-4 : Manufacturing capability will positively influence information generation. H4-5 : Manufacturing capability will positively influence information diffusion. H4-6 : Manufacturing capability will positively influence information response. H4-7 : Marketing capability will positively influence information generation. H4-8 : Marketing capability will positively influence information diffusion. H4-9 : Marketing capability will positively influence information response. H5 : Market information orientation will positively influence business performance. H5-1 : Information generation will positively influence product competitiveness. H5-2 : Information generation will positively influence merits for new technology and/or product development into business performance. H5-3 : Information diffusion will positively influence product competitiveness. H5-4 : Information diffusion will positively influence merits for new technology and/or product development into business performance. H5-5 : Information response will positively influence product competitiveness. H5-6 : Information response will positively influence merits for new technology and/or product development into business performance. H6 : Market information orientation will mediate the relationship between technology innovation capability and business performance. H7 : Market information orientation will mediate the relationship between technology commercializing capability and business performance. The followings are the research results : First, as for the effect of technological innovation on business performance, the technology accumulation capability and technological innovating system have a positive effect on increase in product competitiveness and merits for new technology and/or product development, while R&D capability has little effect on business performance. Second, as for the effect of technology commercialization capability on business performance, the effect of manufacturing capability is relatively greater than that of merits for new technology and/or product development. Third, the mediation effect of market information orientation is identified to exist partially in information generation, information diffusion and information response. Judging from these results, the following analysis can be made : On Increase in product competitiveness, directly related to successful technology commercialization of technology, management capability including technological innovation system, manufacturing capability and marketing capability has a relatively strong effect. On merits for new technology and/or product development, on the other hand, capability in technological aspect including R&D capability, technology accumulation capability and product development capability has relatively strong effect. Besides, in the cast of market information orientation, the level of information diffusion within an organization plays and important role in new technology and/or product development. Also, for commercial success like increase in product competitiveness, the level of information response is primarily required. Accordingly, the following policies are suggested : First, as the effect of technological innovation capability and technology commercialization capability on business performance differs among SMEs; in order for SMEs to secure competitiveness, the government has to establish microscopic policies for SMEs which meet their needs and characteristics. Especially, the SMEs lacking in capital and labor are required to map out management strategies of focusing their resources primarily on their strengths. And the government needs to set up policies for SMEs, not from its macro-scaled standpoint, but from the selective and concentrative one that meets the needs and characteristics of respective SMEs. Second, systematic infrastructures are urgently required which lead technological success to commercial success. Namely, as technological merits at respective SME levels do not always guarantee commercial success, the government should make and effort to build systematic infrastructures including encouragement of M&A or technology trade, systematic support for protecting intellectual property, furtherance of business incubating and industrial clusters for strengthening academic-industrial network, and revitalization of technology financing, in order to make successful commercialization from technological success. Finally, the effort to innovate technology, R&D, for example, is essential to future national competitiveness, but its result is often prolonged. So the government needs continuous concern and funding for basic science, in order to maximize technological innovation capability. Indeed the government needs to examine continuously whether technological innovation capability or technological success leads satisfactorily to commercial success in market economic system. It is because, when the transition fails, it should be left to the government.