• Title/Summary/Keyword: ISOZYME

Search Result 521, Processing Time 0.033 seconds

Characterization of Acyl-CoA Oxidases from the Lipolytic Yeast Candida aaseri SH14

  • Ibrahim, Zool Hilmi;Bae, Jung-Hoon;Sung, Bong Hyun;Kim, Mi-Jin;Rashid, Ahmad Hazri Ab;Sohn, Jung-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.949-954
    • /
    • 2022
  • The lipolytic yeast Candida aaseri SH14 contains three Acyl-CoA oxidases (ACOXs) which are encoded by the CaAOX2, CaAOX4, and CaAOX5 genes and catalyze the first reaction in the β-oxidation of fatty acids. Here, the respective functions of the three CaAOX isozymes were studied by growth analysis of mutant strains constructed by a combination of three CaAOX mutations in minimal medium containing fatty acid as the sole carbon source. Substrate specificity of the CaAOX isozymes was analyzed using recombinant C. aaseri SH14 strains overexpressing the respective genes. CaAOX2 isozyme showed substrate specificity toward short- and medium-chain fatty acids (C6-C12), while CaAOX5 isozyme preferred long-chain fatty acid longer than C12. CaAOX4 isozyme revealed a preference for a broad substrate spectrum from C6-C16. Although the substrate specificity of CaAOX2 and CaAOX5 covers medium- and long-chain fatty acids, these two isozymes were insufficient for complete β-oxidation of long-chain fatty acids, and therefore CaAOX4 was indispensable.

Isolation and Characterization of Fuji Apple Peroxidase (사과 Peroxidase의 분리 및 특성)

  • Jee, Wan-Jung;Cho, Nam-Sook;Kim, In-Cheol;Park, Kwan-Hwa;Choi, Eon-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.442-446
    • /
    • 1991
  • Three peroxidase fractions (peak I, II, III) were isolated from Fuji apples using CM-cellulose chromatography. The homogeneity of the isolated peroxidase isozymes was established by isoelectric focusing and electrophoresis. Isoelectric points of the isozymes were 3.80, 3.82, and 3.85, respectively. The optimum pH of peroxidase isozymes were pH 5.0(peak I) or 5.5(peak II, III), and optimum temperature was $40^{\circ}C$ when assayed by using guaiacol and $H_{2}O_{2}$ as substrates. Inactivation rate of three peroxidase isozymes were different at temperature of $70^{\circ}C$ and at pH of 5.5. The isozyme of peak II was found to be more heat stable than those of peak I and III. D values at $70^{\circ}C$ of peroxidase isozymes (peak I, II, III) were estimated to be 660 sec, 1,320 sec, and 600 sec, respectively. The thermal stability of Fuji apple peroxidase was not influenced in the presence of 0.032 M sucrose or lactose. However, the thermal stability of the enzyme was decreased by fructose and glucose.

  • PDF

The Roles of Lipid Supplements in Ethanol Production Using a Continuous Immobilized and Suspended Cell Bioreactor (연속식 고정화 및 현탁 세포 생물 반응기에 의한 에탄을 생성중 지질 첨가 영향)

  • Gil, Gwang-Hoon
    • Applied Biological Chemistry
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • A one-stage, continuous-flow bioreactor with both immobilized and suspended cells was used to investigate the roles of lipid supplements in ethanol production by Saccharomyces cerevisiae. The reactor performance and the level of alcohol dehydrogenase(ADH) activities of the suspended cells, grown under various conditions, were measured. When ergosterol and/or oleic acid were added with surfactants to the yeast culture grown under non-aerated conditions, remarkable increases in ethanol production and cell growth was achieved, but specific ADH activities were not affected. Especially, no difference of specific ADH activities of the suspended cells grown under aerated and non-aerated condition was observed. The addition of the surfactant as a supplement also resulted in significant increases in ethanol production, cell growth, and specific ADH activity. When ergosterol and oleic acid were added to the yeast culture exposed to higher ethanol concentration($>40\;g/{\ell}$) level, ethanol production, cell growth, and specific ADH activity were increased, but the addition of surfactant was as effective as at lower ethanol concentration level. The results indicated that lipid supplements were more effective at higher ethanol concentration level than at lower ethanol concentration level during ethanol production. ADH isozyme patterns of the yeast cultures grown under various conditions on starch gel electrophoresis showed only one major band, probably ADH I. The migrating distance of the major isozyme, however, varied slightly according to the culture conditions of the cells. No apparent correlation was found between specific ADH activity and amount of ethanol produced. Cell mass was more important factor for ethanol production than specific ADH activity of the cells.

  • PDF

Alterations of Glutathione Peroxidase Patterns by Stressor Treatment in Rice Seedling Roots (스트레스 물질에 의한 벼 glutathione peroxidase 활성패턴 변화)

  • Kim, Yoon-Kyoung;Lee, Mi-Young
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.53-59
    • /
    • 2005
  • The effect of various stressors such as reductant ascorbic acid, signalling molecules (salicylic acid and methyl jasmonic acid), heavy metals $(NiCl_2,\;and\;MnSO_4)$ and NaCl on the glutathione peroxidase (GPX) activities and isoenzyme expression patterns were investigated in rice seedling roots. Total GPX activity increased according to the increase of ascorbic acid concentration. Prominent enhancement of GPX1 isozyme due to ascorbic acid contributed to the increase of total GPX activity. GPX showed different reactivity toward salicylic acid and methyl jasmonic acid. GPX activity increased at 0.1 mM salicylic acid, and then decreased thereafter. However, GPX increased gradually in a methyl jasmonic acid concentration-dependent manner, and 3 fold increase of GPX activity was found at 1 mM methyl jasmonic acid. Moreover, GPX1 isozyme increased according to the increase of salicylic acid, while GPX1 isozyme decreased according to the increase of methyl jasmonic acid. When metal ions were treated, GPX activity increased considerably according to the increase of $NiCl_2$ concentration, however, GPX activity increased about 2 fold at 0.5 mM $CuSO_4$ and then decreased. Enhancement of GPX1 isozyme contributed to the increase of total GPX activities in $NiCl_2-treated$ and $MnSO_4-treated$ rice seedlings. Total GPX activity increased 1.7 fold in response to 300 mM NaCl. Especially GPX2 isozyme showed gradual increase according to the increase of NaCl concentration.

Changes and characteristics of the biochemical components on the differentiation of soybean cell tissue cultures: (1) Changes and characteristics of the proteins, amino acids and peroxidase isozymes on differentiation of soybean cell tissue cultures (대두 기내 배양체의 분화에 대한 생화학적 성분의 변화와 특성 : (I) 대두 기내 배양체의 분화에 대한 단백질, 아미노산 및 peroxidase 동위효소의 변화와 특성)

  • Nam, Sang-Hae;Choi, Sang-Uk;Yang, Min-Suk
    • Applied Biological Chemistry
    • /
    • v.34 no.2
    • /
    • pp.134-141
    • /
    • 1991
  • In order to investigate the changes and characteristics of biochemical metabolic substances of soybean tissue culture during the cultural period, immature cotyledons were detached form the plant on 15th days after flowering and cultured in vitro for 3 weeks. The cultures were classified into embryogenic(EC) and non-embryogenic callus(NEC). A part of the EC lines were subcultured for another 3 weeks and classified into root forming(RFC), and shoot forming cultures(SFC). Another part of the EC lines were used for isolation of protoplasts, which were subsequently cultured in vitro for 4 weeks. The cultures were classified into embryogenic(PEC) and non-embryogenic callus(PNEC) derived from the protoplasts. The cultures of EC and PEC lines showed higher phenylalanine content and lower methionine content than those of NEC and PNEC. At organ differentiation stage, both cultures showed the content of aspartic acid decreased, while the other amino acids increased as a whole. The protein pattern analysis of the cultures revealed that EC and NEC lines contained distinctive polypeptides, with mass of ca. 18KD for EC and ca. 22KD for NEC respectively. The EC and PEC lines also showed high activity of peroxidase isozyme A(piA), while the RFC and SFC lines showed that of peroxidase isozyme B(piB).

  • PDF

Effects of Resistance Training on Skeletal Muscle GLUT-4 Protein and LDH Isozyme Expression in Rats (저항성훈련이 흰쥐 골격근의 GLUT-4 단백질 및 LDH 동위효소 발현에 미치는 영향)

  • Kim, Yeon-Hee;Lee, Sang-Hak;Kim, Jong-Oh;Seo, Tae-Beom;Kim, Young-Pyo;Back, Kyoung-A;Yoon, Jin-Hwan
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1532-1540
    • /
    • 2011
  • The purpose of the present study was to investigate the effect of climbing resistance training on GLUT-4 protein and LDH isozyme activities of the soleus and gastrocnemius muscles in rats. Each experimental group was randomly divided into a control group (n=6) and a resistance exercise (n=6) group. Sprague-Dawley rats were made to climb a 180 cm tower for 12 wk. Weight changes in the resistance exercise group were significantly higher than in the control group (p<0.05). GLUT-4 protein expression of the soleus and gastrocnemius muscles was significantly higher (p<0.05) in the resistance exercise group than in the control group. There was no difference in soleus tissue LDHA4 isozyme activity between the groups. In the case of other LDH isozyme, when compared with the control group, the resistance exercise group showed a significantly higher activity (p<0.05). LDHA4 activity of gastrocnemius muscle tissue was not different between the groups. However, the activity of the resistance exercise group of all the other LDH isozymes was significantly higher than that of the control group (p<0.05). In summary, based on the results of this study, over 12 weeks of resistance training, the total body weight of the rats was reduced and the GLUT-4 activity in the gastrocnemius and soleus muscles was increased. In addition, except for LDH A4 all of the other LDH isozymes activities were increased. These results suggest that climbing resistance training affects the balance of body composition, increases LDH B-type isoenzymes and glucose metabolism capacity, and improves mitochondrial function.

Distribution and Role of Mitochondrial Lactate Dehydrogenase Isozymes in Bird and Mammals (조류 및 포유류 내 미토콘드리아 젖산탈수소효소 동위효소들의 분포와 역할)

  • Cho, Sung Kyu;Yum, Jung Joo
    • Journal of Life Science
    • /
    • v.27 no.5
    • /
    • pp.530-535
    • /
    • 2017
  • Mitochondria were isolated from bird and mammals. The activity of monoamine oxidase (EC 1.4.3.4) was then measured to identify mitochondrial isolation. Lactate dehydrogenase (EC 1.1.1.27, lactate dehydrogenase, LDH) isozymes in mitochondrial fractions were analyzed by biochemical and immunochemical methods. The activity of mitochondrial LDH was lower in mammals than in bird. Therefore, the role of mitochondrial LDH seems to be more important in bird than in mammals. The concentration of protein in all tissues of bird and mammals was less in the mitochondria than in the cytosol. In the cytosol of mice and golden hamsters, testis-specific LDH $C_4$ isozyme was expressed in testis in addition to the LDH $A_4$, $A_3B$, $A_2B_2$, $AB_3$, and $B_4$ isozymes. A single LDH AB hybrid isozyme was expressed in the chicken mitochondria. In mammals, mitochondrial LDH isozymes were differed according to tissues. LDH $A_4$ and testis-specific LDH $C_4$ isozymes were expressed in the mitochondria of mice. The mitochondrial testis-specific LDH $C_4$ isozyme was expressed only in the mice. In the golden hamster mitochondria, the LDH $B_4$ isozyme functioned as a lactate oxidase. As our results show, the mitochondrial LDH seemed to be playing the different role in the bird and mammals in relation with their metabolic conditions and habitats.

Plant Regeneration of Geranium (Pelargonium graveolense) Callus and Changes of Peroxidase Isozyme Pattern (제라늄(Pelargonium graveolense) 캘러스의 재분화 및 peroxidase isozyme 발현패턴 변화)

  • Lee, Seok-Hyun;Lee, Mi-Young
    • Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.184-189
    • /
    • 2000
  • Callus was induced from the petioles of scented-geranium (Pelargonium graveolense) in MS medium containing various concentrations of plant growth regulators. The highest frequency of more than 70% of callus was induced in 2 mg/l NAA and 0.5 mg/l BAP or 2 mg/l 2,4-D and 0.5 mg/l BAP combined treatment, while not in 2,4-D, NAA or BAP alone. When the callus was transferred to the MS medium containing 0.05 mg/l NAA and 0.5 mg/l BAP, were highest intensity of shoot formation, 14 shoots/callus, was induced after 5 weeks. The highest rooting was observed on hormone-free rooting media from the regenerated shoots after 3 weeks, indicating that the regeneration from geranium callus might be possible by changing the hormone ratios. Peroxidase (POD) specific activities in callus induced from 2 mg/l NAA and 0.5 mg/l BAP were higher than those of 2 mg/l 2,4-D and 0.5 mg/l BAP callus during the entire culture periods. POD isozyme C3 was the main cathodic POD isozyme expressed in NAA and BAP callus, while C1 was the main in 2,4-D and BAP callus. However, anodic POD isozymes, A1, A2 and A3 were expressed with similar activities in both hormone combinations.

  • PDF

A study on Activity and Separation of Alcohol Dehydrogenase in Drosophila melanogaster (노랑초파리(Drosophila melanogaster)의 알코올 水素離脫酵素의 活性과 分離에 關한 硏究)

  • Oh, Suk Heun;Chung, Yong Jae;Park, Sang Yoon
    • The Korean Journal of Zoology
    • /
    • v.22 no.2
    • /
    • pp.55-66
    • /
    • 1979
  • Drosophila melanogaster Oregon-R had been bred in a large quantity and the crude alcohol dehydrogenase (ADH) obtained was purified and the activity of the enzyme was measured, analyzed and its patterns were examined. The results obtained are presented below: 1. Through this experiment, it was found that the specific activity of ADH of the D. melanogaster is about more than five times as strong as that of the D. mlanogaster Samarkands which was found by Jacobson et al. in 1970. 2. It was learned that the ADH isozyme patterns of this strain was found to be $ADH_1$ and $AHD_2$ in the fast form and $ADH_5$ in the slow form. 3. It was learned that, $ADH_1, ADH_2$, and $ADH_5A$ are found as the ADH patterns of crude enzyme, and that $ADH_1, ADH_5A$ and $ADH_5B$ as the ADH patterns of the purified enzyme. 4. After the isolation andpurification of $ADH_5A$ and $ADH_1$ isozymes, specfic activity of $ADH_5A$ was found to be 4,330 (units/mg) and that of $ADH_1$ to be 3,670 (units/mg), and the exact position of their zymogram on the 7% acrylamide disc gel was distinguished.

  • PDF