• Title/Summary/Keyword: ISODATA 기법

검색결과 40건 처리시간 0.021초

A Study on Improving Performance of Supervised Classifier using ISODATA and Fuzzy C-Means Clustering Method (ISODATA와 퍼지 C-Means를 이용한 감독 분류의 성능 향상에 관한 연구)

  • 전영준;김진일
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (1)
    • /
    • pp.79-81
    • /
    • 2003
  • 본 논문에서는 위성영상의 강독 분류에 대한 성능 개선을 위하여 ISODATA와 퍼지 C-Means 클러스터링 기법을 이용한 베이시안 최대우도 분류방법을 제안하였다. 본 연구에서는 ISODATA 클러스터링 기법을 이용하여 각각의 분류항목별로 분광특징에 따라 분석가가 선정한 훈련 데이터를 분할하여 새로운 훈련 데이터를 선정함으로써 분류항목별 훈련데이터의 분광적인 특징에 관계없이 분류를 수행할 수 있도록 하였다. 그리고 새롭게 선정된 훈련 데이터를 이용하여 퍼지 C-Means 클러스터링을 수행하고 그 결과를 베이시안 최대우도 분류기법의 사전확률로 이용함으로써 위성영상의 감독 분류에 대한 성능을 개선할 수 있는 방법을 제안한다. 제안된 기법은 Landset TM 위성영상을 이용하여 그 적용성을 시험하였다.

  • PDF

A Study on the Classification for Satellite Images using Hybrid Method (하이브리드 분류기법을 이용한 위성영상의 분류에 관한 연구)

  • Jeon, Young-Joon;Kim, Jin-Il
    • The KIPS Transactions:PartB
    • /
    • 제11B권2호
    • /
    • pp.159-168
    • /
    • 2004
  • This paper presents hybrid classification method to improve the performance of satellite images classification by combining Bayesian maximum likelihood classifier, ISODATA clustering and fuzzy C-Means algorithm. In this paper, the training data of each class were generated by separating the spectral signature using ISODATA clustering. We can classify according to pixel's membership grade followed by cluster center of fuzzy C-Means algorithm as the mean value of training data for each class. Bayesian maximum likelihood classifier is performed with prior probability by result of fuzzy C-Means classification. The results shows that proposed method could improve performance of classification method and also perform classification with no concern about spectral signature of the training data. The proposed method Is applied to a Landsat TM satellite image for the verifying test.

Comparison of object oriented and pixel based classification of satellite data for effective management of natural resources (천연 자원의 효율적인 관리를 위한 위성자료의 객체 및 픽셀기반의 비교)

  • Jayakumar, S.;Heo, Joon;Sohn, Hong-Gyoo;Lee, Jung-Bin;Kim, Jong-Suk
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 한국측량학회 2007년도 춘계학술발표회 논문집
    • /
    • pp.215-218
    • /
    • 2007
  • 이 논문은 고해상도 Quickbird 영상을 이용하여 세부레벨계획을 위한 토지피복분류를 수행하였으며 고해상도 영상을 이용한 토지피복분류를 위하여 객체기반분류와 ISODATA 기법을 적용하였다. 객체기반분류는 eCognition 소프트웨어를 사용하였으며 ISODATA 기법의 토지피복분류 결과와 비교분석을 수행하였다. 연구 대상지역은 인도의 Sukkalampatti이라 하는 작은 유역을 대상으로 연구를 진행하였다. 고해상도 영상의 사용으로 토지피복분류에 있어서 공간 해상도에 따른 토지피복의 세부레벨분류 정확도를 향상 시킬 수 있는 이점을 확인 할 수 있으며 또한, 객체기반분류와 ISODATA 기법의 분류 결과는 eCognition을 사용한 객체기반 토지피복분류결과가 ISODATA의 픽셀기반의 분류방법보다 높은 정확도를 보였다.

  • PDF

A Study on the Extraction of a River from the RapidEye Image Using ISODATA Algorithm (ISODATA 기법을 이용한 RapidEye 영상으로부터 하천의 추출에 관한 연구)

  • Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제15권4호
    • /
    • pp.1-14
    • /
    • 2012
  • A river is defined as the watercourse flowing through its channel, and the mapping tasks of a river plays an important role for the research on the topographic changes in the riparian zones and the research on the monitoring of flooding in its floodplain. However, the utilization of the ground surveying technologies is not efficient for the mapping tasks of a river due to the irregular surfaces of the riparian zones and the dynamic changes of water level of a river. Recently, the spatial information data sets are widely used for the coastal mapping tasks due to the acquisition of the topographic information without human accessibility. In this research, we tried to extract a river from the RapidEye imagery by using the ISODATA(Iterative Self_Organizing Data Analysis) classification algorithm with the two different parameters(NIR (Near Infra-Red) band and NDVI(Normalized Difference Vegetation Index)). First, the two different images(the NIR band image and the NDVI image) were generated from the RapidEye imagery. Second, the ISODATA algorithm were applied to each image and each river was generated in each image through the post-processing steps. River boundaries were also extracted from each classified image using the Sobel edge detection algorithm. Ground truths determined by the experienced expert are used for the assessment of the accuracy of an each generated river. Statistical results show that the extracted river using the NIR band has higher accuracies than the extracted river using the NDVI.

Land Use Classification in Very High Resolution Imagery by Data Fusion (영상 융합을 통한 고해상도 위성 영상의 토지 피복 분류)

  • Seo, Min-Ho;Han, Dong-Yeob;Kim, Yong-Il
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2005년도 추계학술대회
    • /
    • pp.17-22
    • /
    • 2005
  • Generally, pixel-based classification, utilize the similarity of distances between the pixel values in feature space, is applied to land use mapping using satellite remote sensing data. But this method is Improper to be applied to the very high resolution satellite data (VHRS) due to complexity of the spatial structure and the variety of pixel values. In this paper, we performed the hierarchical classification of VHRS imagery by data fusion, which integrated LiDAR height and intensity information. MLC and ISODATA methods were applied to IKONOS-2 imagery with and without LiDAR data prior to the hierarchical classification, and then results was evaluated. In conclusion, the hierarchical method with LiDAR data was the superior than others in VHRS imagery and both MLC and ISODATA classification with LiDAR data were better than without.

  • PDF

The Hyperspectral Image Classification with the Unsupervised SAM (무감독 SAM 기법을 이용한 하이퍼스펙트럴 영상 분류)

  • 김대성;김진곤;변영기;김용일
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 한국측량학회 2004년도 춘계학술발표회논문집
    • /
    • pp.159-164
    • /
    • 2004
  • SAM(Spectral Angle Mapper) is the method using the similarly of the angle between pairs of signatures instead of the spectral distance(MDC, MLC etc.) for classification or clustering. In this paper, we applied unsupervised techniques(Unsupervised SAM and ISODATA) to the Hyperspectral Image(Hyperion) which has innumerable, narrow and contiguous spectral bands and Multispectral Image(ETM$\^$+/) for the clustering of signatures. The overall measured accuracies of the USAM and ISODATA of multispectral image were 76.52%, 53.91% and the USAM and ISODATA of hyperspectral image were 63.04%, 53.91%. From the results of our test, we report that the Unsupervised SAM is better classfication technique than ISODATA. Also we believe that the "Spectral Angle" can potentially be one of the most accurate classifier not only multispectral images but hyperspectral images.

  • PDF

Mapping of land cover using QuickBird satellite data based on object oriented and ISODATA classification methods - A comparison for micro level planning (Quickbird 영상을 이용한 객체지향 및 ISODATA 분류기법기반 토지피복분류-세부레벨계획을 위한 비교분석)

  • Jayakumar, S.;Lee, Jung-Bin;Heo, Joon
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 2007년도 춘계학술대회 논문집
    • /
    • pp.113-119
    • /
    • 2007
  • This article deals mainly with two objectives viz, 1) the potentiality of very high-resolution(VHR) multi-spectral and pan chromatic QuickBird satellite data in resources mapping over moderate resolution satellite data (IRS LISS III) and 2) the advantages of using object oriented classification method of eCognition software in land use and land cover analysis over the ISODATA classification method. These VHR data offers widely acceptable metric characteristics for cartographic updating and increase our ability to map land use in geometric detail and improve accuracy of local scale investigations. This study has been carried out in the Sukkalampatti mini-watershed, which is situated in the Eastern Ghats of Tamil Nadu, India. The eCognition object oriented classification method succeeded in most cases to achieve a high percentage of right land cover class assignment and it showed better results than the ISODATA pixel based one, as far as the discrimination of land cover classes and boundary depiction is concerned.

  • PDF

Stabilization of Power System using Self Tuning Fuzzy controller (자기조정 퍼지제어기에 의한 전력계통 안정화에 관한 연구)

  • 정형환;정동일;주석민
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제5권2호
    • /
    • pp.58-69
    • /
    • 1995
  • In this paper GFI (Generalized Fuzzy Isodata) and FI (Fuzzy Isodata) algorithms are studied and applied to the tire tread pattern classification problem. GFI algorithm which repeatedly grouping the partitioned cluster depending on the fuzzy partition matrix is general form of GI algorithm. In the constructing the binary tree using GFI algorithm cluster validity, namely, whether partitioned cluster is feasible or not is checked and construction of the binary tree is obtained by FDH clustering algorithm. These algorithms show the good performance in selecting the prototypes of each patterns and classifying patterns. Directions of edge in the preprocessed image of tire tread pattern are selected as features of pattern. These features are thought to have useful information which well represents the characteristics of patterns.

  • PDF

Monitoring Spatiotemporal Changes of Tidal Flats in Go-Gunsan Islands by Environmental Factors using Satellite Images (위성영상을 활용한 환경 요인에 따른 고군산 군도 간석지의 시공간적 변화 탐지)

  • Lee, Hong-Ro;Lee, Jae-Bong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제8권3호
    • /
    • pp.34-43
    • /
    • 2005
  • We will catch the spatio-temporal changes that analyse the unknown topography of Go-Gunsan Islands using Landsat TM satellite images into an unsupervised ISODATA classification and a supervised nearest likelihood classification. Each sedimental topography has the different characteristics according to building the Saemangeum embarkment. We will deal with the distribution of sedimental shapes using ERDAS Imagine 8. 6. The result that classifies specifically topographic properties of our research area be considered to get use of establishing the reclaiming program and predicating the reclaimed sedimental topography. The research area can be classified into tidal flats and sea level using band 4 among 7 bands of Landsat TM. Also band 5 can be used to classify the special unknown shapes of tidal flats. We will clarify the efficiency that spatio-temporal sedimental changes can be extracted through processing satellite images. Therefore, the spatio-temporal unknown topography change monitoring using satellite images is expected to be very useful to clarify whether the tidal flat is generated or not in the Go-Gunsan Islands at the outer side of the embarkment after constructing completely the Saemangeum tidal embarkment.

  • PDF

A Design of Clustering Classification Systems using Satellite Remote Sensing Images Based on Design Patterns (디자인 패턴을 적용한 위성영상처리를 위한 군집화 분류시스템의 설계)

  • Kim, Dong-Yeon;Kim, Jin-Il
    • The KIPS Transactions:PartB
    • /
    • 제9B권3호
    • /
    • pp.319-326
    • /
    • 2002
  • In this paper, we have designed and implemented cluttering classification systems- unsupervised classifiers-for the processing of satellite remote sensing images. Implemented systems adopt various design patterns which include a factory pattern and a strategy pattern to support various satellite images'formats and to design compatible systems. The clustering systems consist of sequential clustering, K-Means clustering, ISODATA clustering and Fuzzy C-Means clustering classifiers. The systems are tested by using a Landsat TM satellite image for the classification input. As results, these clustering systems are well designed to extract sample data for the classification of satellite images of which there is no previous knowledge. The systems can be provided with real-time base clustering tools, compatibilities and components' reusabilities as well.