• Title/Summary/Keyword: ISM%3A jets and outflows

Search Result 5, Processing Time 0.018 seconds

SURVEY OF CARBON MONOXIDE OUTFLOWS ASSOCIATED WITH MOLECULAR HYDROGEN EMISSION FEATURES IN THE NORTHERN ORION A MOLECULAR CLOUD

  • Park Geum-Sook;Choi Min-Ho
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.31-40
    • /
    • 2006
  • Near-IR $H_2$ emission features in the northern region of the Orion A giant molecular cloud were observed in the $CO\;J\;=\;1\;{\rightarrow}\;0$ line in search of CO outflows. Out of the 30 sources surveyed, CO line wings were detected toward 28 positions, suggesting a strong correlation between $H_2$ jets and CO outflows. Blueshifted wings were detected toward 26 positions while redshifted wings were detected toward 15 positions, which suggests that there is a bias in the source selection. The bias is more severe in OMC 3 than in OMC 2. Since the protostars in OMC 3 are younger and more deeply embedded, the bias may be caused by the difference of extinction between blueshifted and redshifted outflows. Some physical parameters of the outflows were derived from the line profiles.

THE GALACTIC-SCALE MOLECULAR OUTFLOWS IN STARBURST GALAXIES NGC 2146 AND NGC 3628

  • TSAI, AN-LI;MATSUSHITA, SATOKI
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.499-502
    • /
    • 2015
  • Starburst galaxies have strong star formation activity and generate large scale outflows which eject a huge amount of gas mass. This process affects galaxy activity, and therefore, the detailed study of nearby starburst galaxies could provide valuable information for the study of distant ones. So far there have been only a few studies of galactic-scale molecular outflows due to the sensitivity limitation of telescopes. Our study provides two nearby examples, NGC 2146 and NGC 3628. We used Nobeyama Millimeter Array (NMA) CO(1-0) data, Chandra soft X-ray data, and NMA 3 mm data to study the kinematics of molecular outflows, their interaction with ionized outflows, and the star forming activity in the starburst region. We found that the gas ejected through molecular outflows is much more significant than that used to form stars.

MOLECULAR OUTFLOWS FROM NEWLY FORMED MASSIVE STARS

  • KIM, KEE-TAE;KIM, WON-JU;KIM, CHANG-HEE
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.6
    • /
    • pp.365-380
    • /
    • 2015
  • We map 6 massive young stellar objects (YSOs) in the CO J=2-1 line and survey 18 massive YSOs, including the six, in the HCO+ J=1−0, SiO J=2−1, H2O 616 − 523 maser, and CH3OH 70 − 61 A+ maser lines. We detect CO bipolar outflows in all the six mapped sources. Four of them are newly discovered (07299−1651, 21306+5540, 22308+5812, 23133+6050), while 05490+2658 is mapped in the CO J=2-1 line for the first time. The detected outflows are much more massive and energetic than outflows from low-mass YSOs with masses >20 M and momenta >300 M km s−1. They have mass outflow rates (3−6)×10−4 M yr−1, which are at least one order of magnitude greater than those observed in low-mass YSOs. We detect HCO+ and SiO line emission in 18 (100%) and 4 (22%) sources, respectively. The HCO+ spectra show high-velocity wings in 11 (61%) sources. We detect H2O maser emission in 13 (72%) sources and 44 GHz CH3OH maser emission in 8 (44%) sources. Of the detected sources, 5 H2O and 6 CH3OH maser sources are new discoveries. 20081+3122 shows high-velocity (>30 km s−1) H2O maser lines. We find good correlations of the bolometric luminosity of the central (proto)star with the mechanical force, mechanical luminosity, and mass outflow rate of molecular outflow in the bolometric luminosity range of 10−1−106 L, and identified 3 intermediate- or high-mass counterparts of Class O objects.

NUMERICAL SIMULATIONS OF HH 211: A REFLECTION-SYMMETRIC BIPOLAR OUTFLOW

  • MORAGHAN, ANTHONY;LEE, CHIN-FEI;HUANG, PO-SHENG;VAIDYA, BHARGAV
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.113-114
    • /
    • 2015
  • Recent high-resolution, high-sensitivity observations of protostellar jets have shown many to possess an underlying 'wiggle' structure. HH 211 is one such example where recent sub-mm observations revealed a clear reflection-symmetric wiggle. An explanation for this is that the HH211 jet source is moving as part of a protobinary system. Here we test this assumption by simulating HH211 through 3D hydrodynamic simulations using the pluto code with a molecular chemistry and cooling module, and initial conditions based on an analytical model derived from SMA observations. Molecular chemistry allows us to accurately plot synthetic molecular emission maps and position-velocity diagrams for direct comparison to observations, enabling us to test the observational assumptions and put constraints on the physical parameters of HH211. Our preliminary results show that the reflection-symmetric wiggle can be recreated through the assumption of a jet source being part of a binary system.

IMAGING THE CIRCUMSTELLAR ENVELOPES AROUND EVOLVED STARS WITH THE SMA

  • HIRANO NAOMI;CHIU PO-JIAN;MULLER SEBASTIEN;TRUNG DINH-V
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.219-222
    • /
    • 2005
  • We present the high-resolution (2"-4") images of the molecular envelopes surrounding the evolved stars, V Hya, VY CMa, and ${\pi}^1$ Gru observed with the Submillimeter Array. The CO J=2-1 and 3-2 images of the carbon star V Hya show that the circumstellar structure of this star consists of three kinematic components; there is a flattened disk-like envelope that is expanding with a velocity of ${\~}16 km\;s^{-1}$, the second component is the medium-velocity wind having a deprojected velocity of 40-120 km $s^{-l}$ moving along the disk plane, and the third one is the bipolar molecular jet having an extreme velocity of 70-185 km $s^{-l}$. The axis of this high velocity jet is perpendicular to the plane of the disk-like envelope. We found that the circumstellar structure of the S-star ${\pi}^1$ Gru traced by the CO J =2-1 resembles that of V Hya quite closely; the star is surrounded by the expanding disk-like envelope and is driving the medium-velocity wind along the disk plane. We also obtained the excellent images of VY CMa with the CO and $^{13}CO$ J=2-1 and $SO\;6_5-5_4$ lines. The maps of three molecular lines show that the envelope has a significant velocity gradient in the east-west direction, suggesting that the envelope surrounding VY CMa is also flattened and expanding along its radial direction. The high-resolution images obtained with the SMA show that some AGB stars are associated with the asymmetric mass loss including the equatorial wind and bipolar jet.