• 제목/요약/키워드: ISM: infrared

Search Result 73, Processing Time 0.021 seconds

NEAR- TO MID-INFRARED SLIT SPECTROSCOPIC OBSERVATIONS OF THE UNIDENTIFIED INFRARED BANDS IN THE LARGE MAGELLANIC CLOUD

  • Mori, T.I.;Sakon, I.;Onaka, T.;Umehata, H.;Kaneda, H.;Ohsawa, R.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.209-212
    • /
    • 2012
  • We present the results of the near-infrared (NIR) to mid-infrared (MIR) slit spectroscopic observations of the diffuse emission toward nine positions in the nearby irregular galaxy Large Magellanic Cloud (LMC) with the Infrared Camera (IRC) on board AKARI. The unique characteristic of AKARI/IRC provides a great opportunity to analyze variations in the unidentified infrared (UIR) bands based on continuous spectra from 2.5 to $13.4{\mu}m$ of the same slit area. The observed variation of $I_{3.3}/I_{11.3}$ suggests destruction of small-sized UIR band carriers, polycyclic aromatic hydrocarbons (PAHs) in harsh environments. This result demonstrates that the UIR $3.3{\mu}m$ band provides us powerful information on the excitation conditions and/or the size distribution of PAHs, which is of importance for understanding the evolutionary process of hydrocarbon grains in the Universe. It also suggests a new diagnostic diagram of two band ratios, such as $I_{3.3}/I_{11.3}$ versus $I_{7.7}/I_{11.3}$, for the interstellar radiation conditions. We discuss on the applicability of the diagnostic diagram to other astronomical objects, comparing the LMC results with those observed in other galaxies such as NGC 6946, NGC 1313, and M51.

DUST GRAINS IN AGB STARS AS SOURCES OF INTERSTELLAR DUST

  • SUH KYUNG- WON
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.289-294
    • /
    • 2004
  • The main sources of interstellar dust are believed to be dust envelopes around AGB stars. The outflowing envelopes around the long period pulsating variables are very suitable place for massive dust formation. Oxygen-rich silicate dust grains or carbon-rich dust grains form in the envelopes around AGB stars depending on the chemical composition of the stellar surface. The dust grains expelled from AGB stars get mixed up and go through some physical and chemical changes in interstellar medium. There are similarities and differences between interstellar dust and dust grains in AGB stars. The mass cycle in the Galaxy may be best manifested by the fact that the dust grains at various regions have many similarities and understandable differences.

FLUX CALIBRATION METHOD OF SLIT SPECTROMETER FOR EXTENDED SOURCES

  • Lee, Sung-Ho;Park, Soo-Jong
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.4
    • /
    • pp.151-155
    • /
    • 2006
  • Long slit spectrometers are widely used in optical and infrared bands in astronomy. Absolute flux calibration for extended sources, however, is not straightforward, because a portion of the radiation energy from a flux calibration star is blocked by the narrow slit width. Assuming that the point spread function(PSF) of the star is circularly symmetric, we develop a robust method to extrapolate the detected stellar flux to the unobscured flux using the measured PSF along the slit-length direction. We apply this method to our long slit data and prove that the uncertainty of the absolute flux calibration is less than a few percents.

A NEAR-INFRARED STUDY OF THE HIGHLY-OBSCURED ACTIVE STAR-FORMING REGION W51B

  • Kim, Hyo-Sun;Nakajima, Yasushi;Sung, Hwan-Kyung;Moon, Dae-Sik;Koo, Bon-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.17-28
    • /
    • 2007
  • We present wide-field $JHK_s$-band photometric observations of the three compact H II regions G48.9-0.3, G49.0-0.3, and G49.2-0.3 in the active star-forming region W51B. The star clusters inside the three compact H II regions show the excess number of stars in the $J-K_s$ histograms compared with reference fields. While the mean color excess ratio $(E_{J-H}/E_{H-K_s})$ of the three compact H II regions are similar to ${\sim}2.07$, the visual extinctions toward them are somewhat different: ${\sim}17$ mag for G48.9-0.3 and G49.0-0.3; ${\sim}23$ mag for G49.2-0.3. Based on their sizes and brightnesses, we suggest that the age of each compact H II region is ${\leq}2\;Myr$. The inferred total stellar mass, ${\sim}1.4{\times}10^4M_{\odot}$, of W51B makes it one of the most active star forming regions in the Galaxy with the star formation efficiency of ${\sim}10%$.

SYSTEMATIC STUDY OF INTERSTELLAR ICES IN NEARBY GALAXIES

  • Yamagishi, M.;Kaneda, H.;Oyabu, S.;Ishihara, D.;Onaka, T.;Shimonishi, T.;Suzuki, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.249-252
    • /
    • 2012
  • The absorption features due to interstellar ices, especially $H_2O$ and $CO_2$ ices, provide us with crucial information on present and past interstellar environments, and thus the evolutionary histories of galaxies. Before AKARI, however, few detections of ices were reported for nearby galaxies. The AKARI's unique capability of near-infrared spectroscopy with high sensitivity enables us to systematically study ices in nearby galaxies. Thus we have explored many near-infrared spectra ($2.5-5{\mu}m$) of the 211 pointed observations, searching for the absorption features of ices. As a result, out of 122 nearby galaxies, we have significantly detected $H_2O$ ice from 36 galaxies and $CO_2$ ice from 9 galaxies. It is notable that the ices are detected not only in late-type galaxies but also in early-type galaxies. We find that $CO_2$ ice is more compactly distributed near the galactic center than $H_2O$ ice. Finally, we suggest that the gas density of a molecular cloud and UV radiation may be important factors to determine the abundance of ices.

THE CENTRAL REGION OF THE BARRED SPIRAL GALAXY NGC 1097 PROBED BY AKARI NEAR-INFRARED SPECTROSCOPY

  • Kondo, T.;Kaneda, H.;Oyabu, S.;Ishihara, D.;Mori, T.;Yamagishi, M.;Onaka, T.;Sakon, I.;Suzuki, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.257-258
    • /
    • 2012
  • With AKARI, we carried out near-infrared spectroscopy of the nearby barred spiral galaxy, NGC 1097, categorized as Seyfert 1 with a circumnuclear starburst ring. Our observations mapped the galactic center region. As a result, we obtain the spatial distributions of the polycyclic aromatic hydrocarbon $3.3{\mu}m$ and the aliphatic hydrocarbon $3.4-3.6{\mu}m$ emission. The former is detected from all the observed regions and the latter is enhanced near the bar connecting the ring with the nucleus. In addition, we detect absorption features due to $H_2O$ ice and CO/SiO at the ring and the galactic center, while we detect the hydrogen recombination line $Br{\alpha}$ only from the ring. Hence the observed spectra change dramatically within the central 1 kpc region.

INVESTIGATION OF PAHs IN GALACTIC PLANETARY NEBULAE WITH THE AKARI/IRC AND THE SPITZER/IRS

  • Ohsawa, R.;Onaka, T.;Sakon, I.;Mori, T.I.;Yamamura, I.;Matsuura, M.;Kaneda, H.;Bernard-Salas, J.;Berne, O.;Joblin, C.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.259-260
    • /
    • 2012
  • Polycyclic aromatic hydrocarbons (PAHs) in Galactic planetary nebulae (PNe) are investigated by means of the unidentified infrared (UIR) bands. Continuous near- to mid-infrared spectra of PNe are obtained with the AKARI/IRC and the Spitzer/IRS. All 19 PNe in the present study show prominent dust emissions and we investigate the variation in the intensity ratios among the UIR bands. The ionization fraction and the size distribution of PAHs in PNe are derived using the UIR band ratios. We find that the ionization fraction of PAHs in PNe is around 0.0-0.6 and that small PAHs are scarce. The present result indicates a systematic trend of the $3.4{\mu}m$ aliphatic feature to become weak as the PAH ionization fraction increases.

A STUDY OF THE GALACTIC CENTER REGIONS USING THE IMPROVED DATA OF THE MID-INFRARED ALL-SKY SURVEY

  • Mouri, A.;Kaneda, H.;Ishihara, D.;Oyabu, S.;Kondo, T.;Suzuki, S.;Yasuda, A.;Onaka, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.217-218
    • /
    • 2012
  • Among the AKARI all-sky survey data, the $9{\mu}m$ diffuse map is crucial to study the polycyclic aromatic hydrocarbon (PAH) emission features on large spatial scales, while the $18{\mu}m$ map is useful to trace hot dust emission. To utilize these advantages, we have improved the AKARI mid-infrared (MIR) all-sky survey diffuse maps. For example, we have established special methods to remove the effects of the ionizing radiation in the South Atlantic Anomaly (SAA) and of the scattered light from the moon. Using improved diffuse map data, we study the properties of PAHs and dust in the Galactic center region associated with high-energy phenomena.

INFRARED [FE II] EMISSION LINES FROM RADIATIVE ATOMIC SHOCKS

  • KOO, BON-CHUL;RAYMOND, JOHN C.;KIM, HYUN-JEONG
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.3
    • /
    • pp.109-122
    • /
    • 2016
  • [Fe II] emission lines are prominent in the infrared (IR) and important as diagnostic tools for radiative atomic shocks. We investigate the emission characteristics of [Fe II] lines using a shock code developed by Raymond (1979) with updated atomic parameters. We first review general characteristics of the IR [Fe II] emission lines from shocked gas, and derive their fluxes as a function of shock speed and ambient density. We have compiled available IR [Fe II] line observations of interstellar shocks and compare them to the ratios predicted from our model. The sample includes both young and old supernova remnants in the Galaxy and the Large Magellanic Cloud and several Herbig-Haro objects. We find that the observed ratios of the IR [Fe II] lines generally fall on our grid of shock models, but the ratios of some mid-IR lines, e.g., [Fe II] 35.35 µm/[Fe II] 25.99 µm, [Fe II] 5.340 µm/[Fe II] 25.99 µm, and [Fe II] 5.340 µm/[Fe II] 17.94 µm, are significantly offset from our model grid. We discuss possible explanations and conclude that while uncertainties in the shock modeling and the observations certainly exist, the uncertainty in atomic rates appears to be the major source of discrepancy.

NEAR-INFRARED SPECTROSCOPY OF CO RO-VIBRATIONAL ABSORPTION TOWARD HEAVILY OBSCURED AGNs

  • Shirahata, Mai;Nakagawa, Takao;Oyabu, Shinki;Usuda, Tomonori
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.169-173
    • /
    • 2017
  • We provide a new physical insight on the hot molecular clouds near the nucleus of the obscured AGNs. We performed near-infrared spectroscopic observations of heavily obscured AGNs in order to reveal physical characteristics of molecular clouds, especially focused on the CO fundamental ro-vibrational absorption around $4.7{\mu}m$. We have made systematic moderate-resolution spectroscopic observations toward 30 representative (U)LIRGs using the AKARI/IRC, and some of the ULIRGs showed the strong CO absorption feature. For three bright (U)LIRGs that show a steep red continuum with the deep CO absorption feature, IRAS 08572+3915, UGC 05101, and IRAS 01250+2832, we have also made high-resolution spectroscopic observations using the Subaru/IRCS. We have successfully detected many absorption lines up to highly excited rotational levels, and these lines are very deep and extremely broad. The derived physical conditions of molecular clouds are extreme; the gas temperature is as high as several 100 to a 1000 K, the $H_2$ column density is larger than $10^{22}cm^{-2}$, and the gas density is greater than $10^7cm^{-3}$. Such hot and dense molecular clouds must exist around the central engine of the AGN.