• Title/Summary/Keyword: ISCLT3

Search Result 8, Processing Time 0.019 seconds

Evaluation of ISCST3, ISCLT3 Atmospheric Dispersion Modelling in Sihwa area (시화지구에서의 ISCST3, ISCLT3 대기확산 모델의 평가)

  • 이권호;김영준;조승현
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.04a
    • /
    • pp.356-358
    • /
    • 2000
  • ISC3는 EPA가 권장하는 가우시안 대기확산 모델로서 일반적으로 공장 배출원으로 인한 일정 기간동안의 대기확산농도와 범위를 예측하기 위하여 사용되어진다. ISC3 모델은 다양한 점오염원, 면오염원, 등을 취급할 수 있을 뿐 아니라 building wake와 down wash 그리고 거리의 함수로써 final plum rise를 옵션으로 사용할 수 있고 단순지형이나 복합지형의 고려가 가능하다. ISC3 모델은 단순지형 장기모델인 ISCLT3와 복합지형 단기모델인 ISCST3가 있으며 모델의 수행에 있어 약간의 차이점이 있다. (중략)

  • PDF

A study on the Development of TCM Urban and Rural mode for Environmental Impact Assessment (환경영향평가를 위한 도시형과 교외형 TCM 개발에 관한 연구)

  • Jang, Young-Kee
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.1
    • /
    • pp.63-70
    • /
    • 1998
  • TCM has been used for many environmental impact assessments in Korea. But there was reported that an error was found in area source calculation of original TCM and modified. In this study, TUM(TCM-urban mode) and TRM(TCM-rural mode) were developed for urban and rural area by modification of original TCM. McElroy-Pooler dispersion parameter was used for area and point source in TUM, Pasquill-Gifford parameter was used for area and point source in TRM. And Irwin's vertical wind speed profile exponents were used for TUM and TRM. Then predicted value by TUM, TRM and a value from the same area and point data by CDM2, ISCLT3 were compared. And it was found that predicted value from point source by TUM, TRM was very similar to a value by CDM2, ISCLT3, and predicted value from area source by TRM was similar to a value by CDM2, ISCLT3. But predicted value from area: source by TUM was an half lower than a value by CDM2, ISCLT3.

  • PDF

Estimation of Fluxes of Air Pollutants in Seoul Conurbation Using ISCLT3 (ISCLT3를 이용한 수도권 도시간 대기오염물질 유출입량 추정)

  • 홍민선;김순태;김영제;양소희;이동섭;장영기
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.2
    • /
    • pp.147-155
    • /
    • 2001
  • ISCLT3 model was applied in Seoul metropolitan area to investigate the source-receptor relationships among 17 cities in the Kyonggi Province. For the purpose of the model simulation, emission rates of NO$_2$, SOx, and PM(sub)10 were prepared for grid scale with 1$\times$1 km, and receptors were located on every 2$\times$2 km grid. Meterological data for the last 10 years(88~97) were used as input data. According to our study, NO$_2$ concentration of the cities ranged from 10 to 45 ppb with the highest value appearing from Puchon city. The concentrations of SOx and PM(sub)10 concentrations fell in the range of 5~20 ppb and 20~70$\mu\textrm{g}$/㎥, respectively. It was also found out that air quality in one city can be affected greatly by the air pollutants originating from other cities.

  • PDF

Comparison of Complex Terrain Effects in the Air Dispersion Modeling at the Poryong Power Plant Site (보령화력 지역의 복잡지형이 대기확산 모델링에 미치는 영향 비교)

  • 오현선;김영성;김진영;문길주;홍욱희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.6
    • /
    • pp.427-437
    • /
    • 1997
  • Complex terrain which is rather typical topographic character in Korea would greatly influence the dispersion of air pollutant. In this study, we investigated how the complex terrain in the vicinity of the coal-fired plant affects the air dispersion modeling results by using several US EPA models: SCREEN, CTSCREEN, ISCLT3, ISCST3, and RTDM. Screening analysis was followed by long-term analysis, and the plume movement over the terrain was precisely tracked for selected cases. Screening analysis revealed that the highest concentration of sulfur dioxide occurs at the downwind distance of 1.3 km under the unstable conditions with weak winds. However, this highest level of $SO_2$ could be raised by 4 times even in the presence of a hill of 170 m at a distance of 2 to 3 km. Seasonal and annual average concentrations predicted with the ISCLT3, ISCST3, and RTDM models showed a rapid incrase of $SO_2$ levels in front of the high mountains which are located more than 15 km away fromt the source. The highest concentrations predicted with ISCST3 were significantly higher than those with ISCLT3 and RTDM mainly because ISCST3 chooses simple-terrain model calculations for receptors between stack height and plume height. Although the highest levels under the stable conditions were usually found in the areas beyond 15 km or more, their absolute values were not so high due to enough dispersion effects between the source and the receptors.

  • PDF

Sensitivity of Air Pollutants Dispersion According to the Selection of Meteorological Data - Case of Seongseo Industrial Complex of Daegu - (기상자료에 따른 대기오염확산 민감도평가 -대구성서산업단지에 대한 사례연구-)

  • Park Myung-Hee;Kim Hae-Dong;Park Mi-Young
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.141-156
    • /
    • 2005
  • The importance of atmospheric conditions for the assessment of an air pollution situation has been demonstrated by their influence on the various compartments of an air pollution system, comprising all stages from emission to effects. Especially, air pollutants dispersion phenomenon are very sensitive according to wind data. But the discussions of how to apply representative meteorological data in air pollution dispersion model are not frequent in Korean environmental assessment processes. In this study, we investigated the difference of air pollutants dispersion phenomenon using U.S EPA ISCLT3 model according to applying the different meteorological data observed at two points for Seongseo industrial complex of Daegu. Two points are the spot site of Seongseo industrial complex and Daegu meteorological observatory. The winds speed of the spot site were smaller than those of Daegu meteorological observatory. In the winter season, the differences came to about $64\%$ for the period$(I\;February\;2001\~31\;January\;2002)$. Wind directions were also fairly different at two points. The air pollutants dispersion phenomenon estimated from our numerical experiments were also fairly different owing to the meteorological conditions at two points.

Sensitivity Analysis of Stability and Other Meteorological Input Parameters for ISC3 Model at Low Wind Speed (저풍속에서의 ISC3 모델의 안정도 및 기타 기상변수에 대한 민감도 분석)

  • 박영재;김유정;김성중;선우영
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.439-440
    • /
    • 2003
  • 대기질 모델(Air Quality Model)은 환경영향평가에서 필수적이다. 환경영향평가에 쓰이는 대기질 모델은 대부분 가우시안 플륨 모델이며, 그 중 ISC(Industrial Source Complex 3)이 가장 널리 쓰인다. 그러나 ISC3가 저풍속시 정확도가 떨어지지만 환경영향평가의 대기질 평가시 이에 대한 고려가 거의 이뤄지지 않은채 대기질 평가가 이뤄지고 있다. 본 연구에서는 ISCLT(Long Term)와 ISCST(Short Term) 모델에 대하여 입력되는 기상변수에 대한 민감도 분석을 수행함으로써 기상변수가 모델의 결과에 미치는 영향을 알아보고자 하였다. (중략)

  • PDF

A Development of Air Dispersion Modeling Software, AirMaster (대기확산 모델링 Software, AirMaster 개발)

  • Koo, Youn-Seo;Yoon, Hee-Young;Kim, Sung-Tae;Jeon, Kyung-Seok;Park, Sung-Soon;Kweon, Hee-Yong;Hwang, Ju-Hyun;Kim, Jong-Hwa;Choi, Jong-Keun;Lee, Im-Hak
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.4
    • /
    • pp.323-338
    • /
    • 2000
  • A Korean air dispersion modeling software, AirMaster, was developed on a basis of dispersion theories adopted in U.S. EPA's ISC3 (Industrial Source Complex - version 3) model to assess the air quality impact from the stacks. Key characteristics of AirMaster are as follows: 1) The building downwash effect can be easily simulated; 2) The screen, long term, and short term models can be run independently; 3) The input data to run the model such as meteorological and terrain data are supplied automatically from the databases in AirMaster; and 4) The modeling procedure is easy and simple under the GUI window environment. In order to validate AirMaster, comparisons with ISC3 model and Indianapolis tracer experiment were carried out. It was shown that AirMaster was identical to ISCST3 and ISCLT3 models in predicting the 1 hr to annual concentrations from the stack under various stack emission and meteorological conditions. The 1 hr concentrations predicted by AirMaster also showed a good agreement with the Indianapolis tracer measurements.

  • PDF

The Ivestigation and Estimate of Influence on Air Quality by the Exhaust of Air Pollutant from Facility of the District Heating Located in Small City (중소도시에 위치한 집단 열 공급시설에서 배출되는 대기오염물에 의한 주변 대기질의 영향 조사 및 예측)

  • Yeon, Ik-Jun;Kim, Kwang-Yul
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.3 s.49
    • /
    • pp.1-10
    • /
    • 2003
  • This study was aimed to investigate the influence on the vicinity by air pollutant generated from facility of the district heating located in local small town. We selected the seven areas arround the surroundings of facility of the district heating, compared the air quality evaluated before and after operations of the facility, and estimated the diffusion of air pollutant exhausted from the facility using a ISC model. The result was that the concentration of TSP before and after operations of the facility was 89${\sim}$94${\mu}$g/m$^3$,and 72${\sim}$81${\mu}$g/m$^3$, respectively and the latter showed a decline in concentration. Also, there was no relationship between straight distance from the facility of the district heating and the concentration of TSP. This result was applicable to cases of PM-10 and SO$_2$. We also investigated the influence on the air around the neighbored area by air pollutant produced from facility of the district heating using ISCLT3 model. The adding-concentrations of TSP, SO$_2$,NO$_2$, and CO were 0.0019${\sim}$0.00183${\mu}$g/m$^3$, 0.0029${\sim}$0.5648ppb, 0.2924${\sim}$l.9837ppb,and 0.0087${\sim}$0.0590ppb, respectively. It is predicted that each concentration is added to pollutant exhausted from facility of the district heating and is about 1/100${\sim}$1/180,000 of present air quality. This has a tiny influence on general air quality. According to this analysis, the concentration of air pollutant is less effected to pollutants expected by the facility of the district heating than other pollutants emitted from mobil source or industrial complex, and etc.