• Title/Summary/Keyword: ISAR

Search Result 75, Processing Time 0.025 seconds

Radar Target Recognition Using a Fusion of Monostatic/Bistatic ISAR Images (모노스태틱/바이스태틱 ISAR 영상 융합을 통한 표적식별 연구)

  • Cha, Sang-Bin;Yoon, Se-Won;Hwang, Seok-Hyun;Kim, Min;Jung, Joo-Ho;Lim, Jin-Hwan;Park, Sang-Hong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.93-100
    • /
    • 2018
  • Inverse Synthetic Aperture Radar(ISAR) image is 2-dimensional radar cross section distributions of a target. For target approaching along radar's line of sight(LOS), the bistatic ISAR can compensate for the weakness of the monostatic ISAR which can not obtain the vertical resolution of the image. However, bistatic ISAR have longer processing times and variability in scattering mechanisms than monostatic ISAR, so target identification using only bistatic ISAR images can be inefficient. Therefore, this paper analyzes target identification performance using monostatic and bistatic ISAR images of targets approaching along radar's LOS and proposes a method of target identification through fusion of two radars. Simulation results demonstrate that identification performance through fusion is more efficient than identification performance using only monostatic, bistatic ISAR images.

Simulation of Bistatic Inverse Synthetic Aperture Radar Image Generation (바이스태틱 ISAR 영상 생성 시뮬레이션)

  • Han, Seung-Ku;Kim, Kyung-Tae;Yang, Eun-Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.451-458
    • /
    • 2014
  • This paper introduces a bistatic ISAR imaging technique. In bistatic geometry, the transmitter and receiver are placed in different locations. The monostatic ISAR is inadequate not only for obtaining images on targets approaching along the radar's line of sight, but also for stealth targets. In this paper, geometry, signal modeling as well as bistatic Doppler for bistatic ISAR are introduced to address these problems. Simulations results show bistatic ISAR images as well as monostatic ISAR images against target's moving scenarios, and analyze their differences for each scenario.

ISAR Imaging of a Real Aircraft Using KOMSAR (KOMSAR를 이용한 실제 항공기 ISAR 영상 제작)

  • Kim, Kyung-Tae;Jeong, Ho-Ryung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.717-722
    • /
    • 2007
  • Inverse synthetic aperture radar(ISAR) images represent two-dimensional(2-D) spatial distribution of electromagnetic scattering phenomenology against a target. Hence, they are usually used in the areas of automatic target recognition (ATR) or non-cooperative target recognition(NCTR), identifying a target using radar in a long distance. This paper makes use of Korea Miniature Synthetic Aperture Radar(KOMSAR) to generate ISAR images of a real and maneuvering aircraft. The data obtained from KOMSAR are processed to eliminate phase errors due to motion of a target, with the use of entropy-based ISAR autofocusing technique. Results show that we can successfully obtain ISAR images of a real aircraft, and the success of experiments implies that a significant step toward ATR using radar has been established.

3-D Multiple-Input Multiple-Output Interferometric ISAR Imaging (3차원 Multiple-Input Multiple-Output 간섭계 ISAR 영상형성기법)

  • Kang, Byung-Soo;Bae, Ji-Hoon;Yang, Eun-Jung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.6
    • /
    • pp.564-571
    • /
    • 2015
  • In this paper, we propose a multiple-input, multiple-output(MIMO) interferometric radar network system to generate three-dimensional (3-D) MIMO interferometric inverse synthetic aperture radar(InISAR) image. In the MIMO interferometric radar network system, the MIMO InISAR image can be formed by an incoherent summation of multiple bistatic InISAR images that show 3-D scatterers of a target observed at different bistatic interfermetric configurations, respectively. Because bistatic-sccattering physics of a target at different viewpoints are visible in the 3-D MIMO InISAR image, it can provide various scatterering physics properties of a target, and can be used for target classification as a useful feature vector. Simulations validate that our proposed method successfully finds locations of scatterers of a target in MIMO radar interferometric network system.

A Study on Effective Identification of Targets Flying in Formation ISAR Images (ISAR 영상을 이용한 효과적인 편대비행 표적식별 연구)

  • Cha, Sang-Bin;Choi, In-Oh;Jung, Joo-Ho;Park, Sang-Hong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.67-76
    • /
    • 2022
  • Monostatic/Bistatic inverse synthetic aperture radar (ISAR) images are two-dimensional radar cross section (RCS) distributions of a target. When there are many targets in a single radar beam, ISAR images are generated with targets overlapped, so it is difficult to perform the targets identification using the trained database. In addition, it is inefficient to perform target identification using only single monostatic and bistatic ISAR images separately because each method has its own advantages and weaknesses. Therefore, this paper analyzes multiple targets identification performances using monostatic/bistatic ISAR images and proposes a method of identification through fusion of two ISAR images. To identify multiple targets, we use image combination technique using trained single target images. Simulation results show effectiveness of proposed method.

The Improvement of Motion Compensation for a Moving Target Using the Gabor Wavelet Transform (Gabor Wavelet Transform을 이용한 움직이는 표적에 대한 움직임 보상 개선)

  • Shin, Seung-Yong;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.10 s.113
    • /
    • pp.913-919
    • /
    • 2006
  • This paper presents a technique for motion compensation of ISAR(Inverse SAR) images for a moving target. If a simple fourier transform is employed to obtain ISAR image for a moving target, the image is usually blurred. These images blurring problem can be solved with the time-frequency transform. In this paper, motion compensation algorithms of ISAR image such as STFT(Short Time Fourier Transform), GWT(Gabor Wavelet Transform) are described. In order to show the performances of each algorithm, we use scattering wave of the ideal point scatterers and simulated MIG-25 to obtain motion compensated ISAR image, and display the resolution of STFT and GWT ISAR image.

A Study on ISAR Imaging Algorithm for Radar Target Recognition (표적 구분을 위한 ISAR 영상 기법에 대한 연구)

  • Park, Jong-Il;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.294-303
    • /
    • 2008
  • ISAR(Inverse Synthetic Aperture Radar) images represent the 2-D(two-dimensional) spatial distribution of RCS (Radar Cross Section) of an object, and they can be applied to the problem of target identification. A traditional approach to ISAR imaging is to use a 2-D IFFT(Inverse Fast Fourier Transform). However, the 2-D IFFT results in low resolution ISAR images especially when the measured frequency bandwidth and angular region are limited. In order to improve the resolution capability of the Fourier transform, various high-resolution spectral estimation approaches have been applied to obtain ISAR images, such as AR(Auto Regressive), MUSIC(Multiple Signal Classification) or Modified MUSIC algorithms. In this study, these high-resolution spectral estimators as well as 2-D IFFT approach are combined with a recently developed ISAR image classification algorithm, and their performances are carefully analyzed and compared in the framework of radar target recognition.

Bistatic ISAR Imaging with UWB Radar Employing Motion Compensation for Time-Frequency Transform (시간-주파수 변환에 요동보상을 적용한 UWB 레이다 바이스테틱 ISAR 이미징)

  • Jang, Moon-Kwang;Cho, Choon-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.7
    • /
    • pp.656-665
    • /
    • 2015
  • In this paper, we improved the clarity and quality of the radar imaging by applying motion compensation for time-frequency transform in B-ISAR imaging. The proposed motion compensation algorithm using UWB radar is verified. B-ISAR algorithm procedure and time-frequency transform for improved motion compensation are provided for theoretical ground. The image was created by a UWB Radar B-ISAR imaging algorithm method. Also, creating a B-ISAR imaging algorithm for motion compensation of time-frequency transformation method was used. The B-ISAR Imaging algorithm is implemented using STFT(Short-Time Fourier Transform), GWT(Gabor Wavelet Transform), and WVD(Wigner-Ville Distribution) approaches. The performance of STFT is compared with the GWT and WVD algorithms. It is found that the WVD image shows more clarity and decreased spread phenomenon than other methods.

ISAR Imaging Using Rear View Radars of an Automobile (후방 감시 차량용 레이다를 이용한 ISAR 영상 형성)

  • Kang, Byung-Soo;Lee, Hyun-Seok;Lee, Seung-Jae;Kang, Min-Suk;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.245-250
    • /
    • 2014
  • This paper introduces the inverse synthetic aperture radar(ISAR) imaging technique for rear view target of an automobile, which uses both linear frequency modulation-frequency shift keying(LFM-FSK) waveform and monopulse tracking. LFM-FSK waveform consists of two sequential stepped frequency waveforms with some frequency offset, and thus, can be used to generate ISAR images of rear view target of an automobile. However, ISAR images can often be blurred due to non-uniform change rate of relative aspect angle between radar and target. In order to address this problem, one-dimensional(1-D) Lagrange interpolation technique in conjunction with angle information obtained from the monopulse tracking is applied to generate uniform data across the radar's aspect angle. Simulation results show that the proposed method can provide focused ISAR images.

Efficient Acquisition of High-Quality ISAR Images Using the Discrete Gabor Representation in an Oversampling Scheme (Oversampling 형태를 갖는 Discrete Gabor Representation을 이용한 고품질 표적 ISAR 영상의 효율적인 획득)

  • Park, Ji-Hoon;Yang, Woo-Yong;Bae, Jun-Woo;Kang, Seong-Cheol;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.566-573
    • /
    • 2013
  • Inverse synthetic aperture radar(ISAR) images have been widely used in non-cooperative target recognition(NCTR). One of the most important issues in ISAR imaging is the improvement of the image smeared by target motion. In this paper, we propose the discrete Gabor representation(DGR) in an oversampling scheme for efficient acquisition of high-quality ISAR images. The DGR compartmentally assigns the Gabor coefficients to unit cells of the time-frequency grid related to the given Gabor logons. Thus, it can show an excellent time-frequency concentration and effectively discriminates the Doppler components from point-scatterers. The simulation results demonstrated that the DGR not only obtained high-quality ISAR images but also retained computational efficiency.