• Title/Summary/Keyword: ISAG microsatellite marker

Search Result 11, Processing Time 0.033 seconds

Standardization and Usefulness of ISAG Microsatellite Markers for Individual Identification and Parentage Verification in Horse Breeds (말에서 개체식별 및 친자확인을 위한 ISAG Microsatellite Marker의 유용성 및 표준화)

  • Kwon, Do-Yeon;Cho, Gil-Jae
    • Journal of Veterinary Clinics
    • /
    • v.26 no.3
    • /
    • pp.220-225
    • /
    • 2009
  • The present study demonstrates a new approach that enables effective horse parentage testing using 22 ISAG microsatellite markers involving 6 heads of Thoroughbred horse(TB) and non-TB. In the comparison allele distribution between these horses, the alleles found in the TB were numerously detected in the non-TB. As results, we confirmed that these ISAG microsatellite markers might apply the pedigree registration of Korean native horse(Jeju horse).

Beagle dogs parentage testing by using 22 ISAG microsatellite markers

  • Ji, Hye-jung;Kim, Eun-hee;Lee, Kyoung-kap;Kang, Tae-young;Lee, Joo-myoung;Shin, Hyoung-doo;Kim, Lyoung-hyo;Yun, Young-min
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.4
    • /
    • pp.457-460
    • /
    • 2007
  • The objective of the study was to establish routine parentage testing system in Beagle dogs using 22 ISAG (International Society for Animal Genetics) canine microsatellite markers (2005). Blood collections were obtained from a mother dog, 4 candidate father dogs and 3 offspring (n = 8). Genomic DNA samples were extracted from 8 Beagle dogs blood for PCR analysis. PCR products for the allele were analyzed by ABI 3130 DNA Sequencer and GeneScan (Ver 3.0) analysis and Genotyper (Ver. 2.1) software. The genetic relationship of mother and 3 offspring as well as one father dog among 4 candidate father dogs was confirmed by microsatellite allele analysis. The results of locus for amelogenin, which was designed for sexing, were matching with real gender among 8 Beagle dogs (female; 217/217 homozygosity, male; 179/217 heterozygosity). Twenty two ISAG microsatellite markers are useful the parentage test of Beagle dogs. In addition, amelogenin is an applicable marker to detecting real sex in dogs.

Verification of ET and AI Derived Offspring Using on the Genetic Polymorphisms of Microsatellite and Coat Color Related Genes in Jeju Black Cattle (제주흑우 집단에서 모색 관련 유전자와 microsatellite marker의 다형현상을 이용한 수정란이식 및 인공수정 유래 후대우 검증)

  • Han, Sang-Hyun;Ko, Jin-Cheul;Kim, Young-Hoon;Kim, Nam-Young;Kim, Jae-Hwan;Ko, Moon-Suck;Jeong, Ha-Yeon;Cho, In-Cheol;Yang, Young-Hoon;Lee, Sung-Soo
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.381-387
    • /
    • 2010
  • To find offspring of Jeju Black cattle (JBC) produced by embryo transfer (ET) and artificial insemination (AI), a molecular genetic study was carried out in candidate cattle populations collected from cattle farms in Jeju Island, Korea. The genetic marker set was composed of 11 ISAG microsatellite (MS) markers, 11 SAES MS markers selected by our preliminary analysis for population diversity of JBC and two major coat color related genes: MC1R and ASIP. The results showed a combined non-exclusion probability for first parent (NE-P1) that was higher than that recommended by ISAG (above 0.9995), and a combined non-exclusion probability for sib identity of $5.3{\times}10^{-10}$. Parentage analysis showed that the cases identified the candidate's father only (77.0%), mother only (54.0%), and both parents (40.5%) in the candidate offspring population. The ET and AI calves were identified as 14.7% in the in vitro fertilized eggs provided and 32.4% in total population, respectively. However, the result from ISAG marker analysis showed 3 identical allele-combinations in 7 calves, and that from ISAG/SAES MS marker combination also showed 1 identical allele-combination in 2 calves. Data from MS and coat-color gene analyses provided information for complete identification of all animals tested. Because the present JBC population was mostly bred using small nuclear founders through bioengineering techniques such as AI and ET, the genetic diversity levels obtained from MS analysis in the JBC population were relatively lower than those of other cattle populations, including Hanwoo. The results suggested that the more efficient marker combinations, including coat color related genotypes, should be studied and used for constructing a system for identification and molecular breeding of JBC as well.

ISAG-recommended Microsatellite Marker Analysis Among Five Korean Native Chicken Lines

  • Choi, Nu-Ri;Hoque, Md. Rashedul;Seo, Dong-Won;Sultana, Hasina;Park, Hee-Bok;Lim, Hyun-Tae;Heo, Kang-Nyeong;Kang, Bo-Seok;Jo, Cheorun;Lee, Jun-Heon
    • Journal of Animal Science and Technology
    • /
    • v.54 no.6
    • /
    • pp.401-409
    • /
    • 2012
  • The objective of this study was to determine genetic variation of five Korean native chicken lines using 30 microsatellite (MS) markers, which were previously recommended by ISAG (International Society for Animal Genetics). The initial study indicated that two microsatellite markers, MCW0284 and LEI0192, were not amplified in these lines and excluded for further analysis. Twenty eight microsatellite markers were investigated in 83 birds from five Korean native chicken lines. The identified mean number of alleles was 4.57. Also, the expected, observed heterozygosity (He, Ho) and polymorphism information content (PIC) values were estimated in these markers and they ranged from 0.31~0.868, 0.145~0.699, and 0.268~0.847, respectively. The results were used for the discrimination of five chicken lines using genetic distance values and also neighbor-joining phylogenetic tree was constructed. Based on the He and PIC values, eighteen markers are enough for the discrimination of these Korean native chicken lines for the expected probability of identity values among genotypes of random individuals (PI), random half sibs ($PI_{half-sibs}$) and random sibs ($PI_{sibs}$). Taken together, these results will help the decision of conservation strategies and establishment of traceability system in this native chicken breed. Also, the use of ISAG-recommended microsatellite markers may indicate that the global comparison with other chicken breeds is possible.

Estimation of Genetic Variation in Holstein Young Bulls of Iran AI Station Using Molecular Markers

  • Rahimi, G.;Nejati-Javaremi, A.;Saneei, D.;Olek, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.4
    • /
    • pp.463-467
    • /
    • 2006
  • Genetic profiles of Iranian Holstein young bulls at the national artificial insemination station were determined on the basis of individual genotypes at 13 ISAG's recommended microsatellites, the most useful markers of choice for parentage identification. In the present study a total of 119 individuals were genotyped at 13 microsatellite loci and for possible parent-offspring combinations. A high level of genetic variation was evident within the investigated individuals as assessed from various genetic diversity measures. The mean number of observed alleles per microsatellite marker was 9.15 and the number of effective alleles as usual was less than the observed values (4.03). The average observed and expected heterozygosity values were 0.612 and 0.898, respectively. The mean polymorphic information content (PIC) value (0.694) further reflected a high level of genetic variability. The average exclusion of probability (PE) of the 13 markers was 0.520, ranging from 0.389 to 0.788. The combined exclusion of probability was 0.999, when 13 microsatellite loci were used for analysis in the individual identification system. Inbreeding was calculated as the difference between observed and expected heterozygosity. Observed homozygosity was less than expected which reflects inbreeding of -3.7% indicating that there are genetic differences between bull-sires and bull-dams used to produce young bulls. The results obtained from this study demonstrate that the microsatellite DNA markers used in the present DNA typing are useful and sufficient for individual identification and parentage verification without accurate pedigree information.

Genetic diversity of Halla horses using microsatellite markers

  • Seo, Joo-Hee;Park, Kyung-Do;Lee, Hak-Kyo;Kong, Hong-Sik
    • Journal of Animal Science and Technology
    • /
    • v.58 no.11
    • /
    • pp.40.1-40.5
    • /
    • 2016
  • Background: Currently about 26,000 horses are breeding in Korea and 57.2% (14,776 horses) of them are breeding in Jeju island. According to the statistics published in 2010, the horses breeding in Jeju island are subdivided into Jeju horse (6.1%), Thoroughbred (18.8%) and Halla horse (75.1%). Halla horses are defined as a crossbreed between Jeju and Thoroughbred horses and are used for horse racing, horse riding and horse meat production. However, little research has been conducted on Halla horses because of the perception of crossbreed and people's weighted interest toward Jeju horses. Method: Using 17 Microsatellite (MS) Markers recommended by International Society for Animal Genetics (ISAG), genomic DNAs were extracted from the hair roots of 3,880 Halla horses breeding in Korea and genetic diversity was identified by genotyping after PCR was performed. Results and conclusion: In average, 10.41 alleles (from 6 alleles in HTG7 to 17 alleles in ASB17) were identified after the analysis using 17 MS Markers. The mean value of $H_{obs}$ was 0.749 with a range from 0.612(HMS1) to 0. 857(ASB2). Also, it was found that $H_{\exp}$ and PIC values were lowest in HMS1 (0.607 and 0.548, respectively), and highest in LEX3(0.859 and 0.843, respectively), and the mean value of $H_{\exp}$ was 0.760 and that of PIC was 0.728. 17 MS markers used in this studies were considered as appropriate markers for the polymorphism analysis of Halla horses. The frequency for the appearance of identical individuals was $5.90{\times}10^{-20}$ when assumed as random mating population and when assumed as half-sib and full-sib population, frequencies were $4.08{\times}10^{-15}$ and $3.56{\times}10^{-8}$, respectively. Based on these results, the 17 MS markers can be used adequately for the Individual Identification and Parentage Verification of Halla horses. Remarkably, allele M and Q of ASB23 marker, G of HMS2 marker, H and L of HTG6 marker, L of HTG7 marker, E of LEX3 marker were the specific alleles unique to Halla horses.

A Parentage Test using Indel, Microsatellite Markers and Genotypes of MC1R in the Jeju Black Cattle Population (제주 흑우 집단에서 Indel, Microsatellite 마커와 MC1R 유전자형을 이용한 친자 확인)

  • Han, Sang Hyun;Cho, Sang-Rae;Cho, In-Cheol;Cho, Won-Mo;Kim, Sang-Geum;Yang, Sung-Nyun;Kang, Yong-Jun;Park, Yong-Sang;Kim, Young-Hoon;Park, Se-Phil;Kim, Eun-Young;Lee, Sung-Soo;Ko, Moon-Suck
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.207-213
    • /
    • 2013
  • This study was carried out to examine a molecular marker system for parentage test in Jeju Black cattle (JBC). Based on the preliminarily studies, we finally selected for construction of a novel genetic marker system for molecular traceability, identity test, breed certification, and parentage test in JBC and its related industrial populations. The genetic marker system had eight MS markers, five indel markers, and two single nucleotide polymorphisms (SNPs; g.G299T and g.del310G) within MC1R gene which is critical to verify the breed specific genotypes for coat color of JBC differing from those of exotic black cattle breeds such as Holstein and Angus. The results showed lower level of a combined non-exclusion probability for second parent (NE-P2) of $4.1202{\times}10^{-4}$ than those previously recommended by International Society of Animal Genetics (ISAG) of $5.000{\times}10^{-4}$ for parentage, and a combined non-exclusion probability for sib identity (NE-SI) of $2.679{\times}10^{-5}$. Parentage analysis has been successfully identified the JBC offspring in the indigenous population and cattle farms used the certified AI semens for production using the JBC-derived offspring for commercial beef. This combined molecular marker system will be helpful to supply genetic information for parentage test and traceability and to develop the molecular breeding system for improvement of animal productivity in JBC population.

Establishment of Genetic Characteristics and Individual Identification System Using Microsatellite loci in Domestic Beef Cattle (초위성체 DNA표지인자를 이용한 국내 육우집단의 품종특성 및 개체식별 체계설정)

  • Kim, Sang-Wook;Jang, Hee-Kyung;Kim, Kwan-Suk;Kim, Jong-Joo;Jeon, Jin-Tae;Yoon, Du-Hak;Kang, Seong-Ho;Jung, Hyo-Il;Cheong, Il-Cheong
    • Journal of Animal Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.273-282
    • /
    • 2009
  • DNA marker information is used to identify or distinguish cattle breeds or individual animal. The purpose of this study was to apply Bovine Genotypes Kit Version 1.1/2.1 to bovine DNA samples (National Institute of Animal Science) taken from Australian / American beef (n=148), Holstein beef (n=170) and Hanwoo cattle (n=177) bred in Jeongeub, Jeonbuk, Korea, so that it could distinguish Hanwoo breed. The Bovine Genotype Kits consist of 16 ISAG MS markers, which were used to build a database of genotypes in each group. Genotyping results were analyzed using MS Tool kit and Phylip program to create phylogenetic tree. The GeneClass 2.0 was used to estimate breed identification. These analyses found that this kit had 100% capacity to distinguish Hanwoo beef, 95.3% capacity to differentiate Australian / American beef and 90% capacity to identify Korean Holstein steer beef. Hence, it is expected that 16 commercial microsatellite markers is useful to categorizegenetic characteristics of Hanwoo breed and also identify Hanwoo individuals and the origin of beef. In particular, it is expected that these markers will be advantageous in discriminating domestic Holstein beef from Australian / Americanbeef.

Establishment of a Microsatellite Marker Set for Individual, Pork Brand and Product Origin Identification in Pigs (돼지 브랜드 식별 및 원산지 추적에 활용 가능한 Microsatellite Marker Set의 확립)

  • Lim, Hyun-Tae;Seo, Bo-Yeong;Jung, Eun-Ji;Yoo, Chae-Kyoung;Zhong, Tao;Cho, In-Cheol;Yoon, Du-Hak;Lee, Jung-Gyu;Jeon, Jin-Tae
    • Journal of Animal Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.201-206
    • /
    • 2009
  • Seventeen porcine microsatellite (MS) markers recommended by the EID+DNA Tracing EU project, ISAG and Roslin institute were selected for the use in porcine individual and brand identification. The MSA, CERVUS, FSTAT, GENEPOP and API-CALC programs were applied for calculating heterozygosity indices. By considering the hetreozygosity value and PCR product size of each marker, we established a MS marker set composed of 13 MS markers (SW936, SW951, SW787, S00090, S0026, SW122, SW857, S0005, SW72, S0155, S0225, SW24 and SW632) and two sexing markers. The expected probability of identity among genotypes of random individuals (PI), probability of identity among genotypes from random half sibs ($PI_{half-sibs}$) and among genotypes of random individuals, probability of identity among genotypes from random sibs($PI_{sibs}$) were estimated as $2.47\times10^{-18}$, $6.39\times10^{-13}$ and $1.08\times10^{-8}$, respectively. The results indicate that the established marker set can provide a sufficient discriminating power in both individual and parentage identification for the commercial pigs produced in Korea.

Sex Determination and Parentage Testing In Miniature Horses (Miniature 말의 성(sex) 결정과 친자감정)

  • Cho Gil-jae;Cho Byung-wook
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.45-48
    • /
    • 2005
  • The aim of this study was to construct a correct pedigree of miniature horses (MH). The sex of MH was detected by PCR amplification of the sex determining region of the Y chromosome gene (SRY) prior to parentage testing. Ten random MH samples for parentage testing were genotyped by using 16 micro satellite markers. Since the SRY band (430 bp) was detected in horses No.1, 2, 6, 7, 8, 9, 10, these are male. However, the DNA segment was not identified in horses No.3, 4, and 5, which therefore are female. After genotyping, parentage testing was performed according to Mendelian fashion and International Society for Animal Genetics (ISAG) guideline. Of the 10 MH, 3 were qualified by the compatibility of 16 markers according to Mendelian fashion in the present DNA typing for parentage verification. These results can provide basic information for developing parentage verification and an individual identification system in MH.