• Title/Summary/Keyword: IS-PCR

Search Result 6,360, Processing Time 0.032 seconds

Relationship between XRCC1 Polymorphism and Acute Complication of Chemoradiation Therapy in the Patients with Colorectal Cancer (대장, 직장암 환자에서 화학방사선치료의 급성 부작용과 XRCC1 유전자 다형성과의 상관관계)

  • Kim Woo-Chul;Hong Yun-Chul;Choi Sun-Keun;Woo Ze-Hong;Nam Jeong-Hyun;Choi Gwang-Seong;Lee Moon-Hee;Kim Soon-Ki;Song Sun-U.;Loh John-Jk
    • Radiation Oncology Journal
    • /
    • v.24 no.1
    • /
    • pp.30-36
    • /
    • 2006
  • Purpose: It is well known from clinical experience that acute complications of chemoradiation therapy vary from patients to patients. However, there are no known factors to predict these acute complications before treatment starts. The human XRCC1 gene is known as a DNA base excision repair gene. We investigated the possibilities of XRCC1 gene polymorphisms as a predictor for the acute complications of chemoradiation therapy in colorectal cancer patients. Materials and Methods: From July 1997 to June 2003, 86 colorectal cancer patients (71 rectal cancer, 13 sigmoid colon cancer and 2 colon cancer patients) were treated with chemoradiation therapy at the Department of Radiation Oncology, Inha University Hospital. Twenty-two patients were in stage B, 50 were in stage C, 8 were in stage D and 6 patients were unresectable cases. External radiation therapy was delivered with 10MV X-ray at a 1.8 Gy fraction per day for a total dose of radiation of $30.6{\sim}59.4 Gy$ (median: 54 Gy). All the patients received 5-FU based chemotherapy regimen. We analyzed the acute complications of upper and lower gastrointestinal tract based on the RTOG complication scale. The initial and lowest WBC and platelet count were recorded during both the RT period and the whole treatment period. Allelic variants of the XRCC1 gene at codons 194, 280 and 399 were analyzed in the lymphocyte DNA by performing PCR-RFLP. Statistical analyses were carried out with the SAS (version 6.12) statistical package. Results: When all the variables were assessed on the multivariate analysis, recurrent disease revealed the factors that significantly correlated with upper gastrointestinal acute complications. Arg399Gln polymorph isms of the XRCC1 gene, the radiation dose and the frequencies of chemotherapy during radiation therapy were significantly correlated with lower gastrointestinal complications. Arg399Gln polymorph isms also affected the decrease of the WBC and platelet count during radiation therapy. Conclusion: Although the present sample size was too small for fully evaluating this hypothesis, this study suggests that Arg399Gln polymorph isms of the XRCC1 genes may be used as one of the predictors for acute complications of chemoradiation therapy in colorectal cancer patients.

Effect of 17β-estradiol on Ecdysteroid Pathway Related Genes in the Brackish Water Flea Diaphanosoma celebensis (17β-estradiol이 기수산 물벼룩의 Ecdysteroid 경로에 미치는 영향)

  • In, Soyeon;Yoo, Jewon;Cho, Hayoung;Lee, Young-Mi
    • Journal of Marine Life Science
    • /
    • v.5 no.2
    • /
    • pp.35-42
    • /
    • 2020
  • 17β-estradiol (E2) is a natural hormone secreted by ovary, and continuously discharged from household and livestock wastewater into aquatic environment. Due to its strong estrogenic activity, it has adverse effects on development and reproduction in crustacean as an endocrine disrupting chemical. Although ecdysteroid signaling pathway play a key role in development in crustacean, little information on transcriptional modulation of ecdysteroid-related genes in response to E2 is available in small crustacean. Here, we investigated the acute toxicity of E2 to obtain 24-h LCx values in the brackish water flea Diaphanosoma celebensis. Time-dependent expression patterns of seven ecdysteroid pathway - related genes (CYP314a1, EcRA, EcRB, USP, ERR, Vtg, VtgR) were further examined using quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR). As results, 24-h LC50 and LC10 values were 9.581 mg/l and 4.842 mg/l, respectively. The mRNA expression of CYP314a1, EcRA, USP, VtgR was significantly up-regulated at 12 or 24 h after exposure to E2. These findings indicate that E2 can affect their molting and reproduction by modulating the expression of ecdysteroid pathway - related in D. celebensis. This study will be useful for better understanding of molecular mode of action of endocrine disrupting chemicals on molting process in small crustacean.

Functional Expression of an Anti-GFP Camel Heavy Chain Antibody Fused to Streptavidin (Streptavidin이 융합된 GFP항원 특이적인 VHH 항체의 기능적 발현)

  • Han, Seung Hee;Kim, Jin-Kyoo
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1416-1423
    • /
    • 2018
  • With strong biotin binding affinity ($K_D=10^{-14}M$), the tetrameric feature of streptavidin could be used to increase the antigen binding activity of a camel heavy chain (VHH) antibody through their fusion, here stained with biotinylated horseradish peroxidase and subsequent immunoassays ELISA and Western blot analysis. For this application, we cloned the streptavidin gene amplified from the Streptomyces avidinii chromosome by PCR, and this was fused to the gene of the 8B9 VHH antibody which is specific to green fluorescent protein (GFP) antigens. To express a soluble fusion protein in Escherichia coli, we used the pUC119 plasmid-based expression system which uses the lacZ promoter for induction by IPTG, the pelB leader sequence at the N-terminus for secretion into the periplasmic space, and six polyhistidine tags at the C-terminus for purification of the expressed proteins using an $Ni^+$-NTA-agarose column. Although streptavidin is toxic to E. coli because of its strong biotin binding property, this soluble fusion protein was expressed successfully. In SDS-PAGE, the size of the purified fusion protein was 122.4 kDa in its native condition and 30.6 kDa once denatured by boiling, suggesting the tetramerization of the monomeric subunit by non-covalent association through the streptavidin moiety fusing to the 8B9 VHH antibody. In addition, this fusion protein showed biotin binding activity similar to streptavidin as well as GFP antigen binding activity through both ELISA and Western blot analysis. In conclusion, the protein resulting from the fusion of an 8B9 VHH antibody with streptavidin was successfully expressed and purified as a soluble tetramer in E. coli; it showed both biotin and GFP antigen binding activity suggesting the possible production of a tetrameric and bifunctional VHH antibody.

Alteration of MicroRNAs Targeted Integrins by PD-MSCs Transplantation Is Involved in Hepatic Regeneration in a Rat Model with BDL (담관결찰 쥐 모델에서 태반유래중간엽줄기세포 이식에 의한 miRNA 표적 인테그린 변화의 간재생 효과)

  • Park, Sohae
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.710-718
    • /
    • 2021
  • Placenta-derived mesenchymal stem cells (PD-MSCs) are promising candidates for cell-based therapy in regenerative medicine. The migration and homing potential of PD-MSCs to injured sites is a critical property of MSC engraftment. MicroRNAs (miRNAs) have recently been shown to regulate the critical functions of MSCs, such as proliferation, survival, and migration. The objective of the present study was to identify the miRNA and target genes involved in PD-MSCs homing in a bile duct ligation (BDL) rat model. We selected candidate miRNAs targeting genes for PD-MSCs homing based on microarray analysis. PD-MSC engraftment in BDL-injured rat liver was identified by immunofluorescence assay and human-specific Alu gene expression by quantitative real-time polymerase chain reaction (qRT-PCR) one week after transplantation. Compared with migrated naïve PD-MSCs under hypoxic and normoxic conditions (Hyp/Nor), the transplanted group with PD-MSCs (Tx) showed distinct differences in miRNA expressions in BDL-injured rat liver. We also validated the miRNAs and their target genes for PD-MSCs homing. The expressions of integrin α4 (ITGA4) and integrin α5 (ITGA5) target genes for miR-199a-5p and miR-148a-3p were significantly upregulated in the Tx group (p<0.05). In addition, integrin β1 (ITGB1) and integrin β8 (ITGB8) were upregulated by suppressing miR-183-5p and miR-145-5p, respectively. These results demonstrated that PD-MSCs regulate miRNA expression related to the integrin family for their homing effects on the BDL-injured rat liver. The findings further suggest that miRNA-mediated regulation of the integrin family contributes to the therapeutic efficacy of PD-MSCs in the rat hepatic fibrosis model by BDL.

Size-dependent Transcriptional Modulation of Genes Involved in Cytochrome P450 Family in the Brackish Water Flea Diaphanosoma celebensis Exposed to Polystyrene Beads (기수산물벼룩 Diaphanosoma celebensis의 미세플라스틱 노출에 따른 크기 의존적 Cytochrome P450 유전자의 발현 양상)

  • Min Jeong Jeon;Je-Won Yoo;Young-Mi Lee
    • Journal of Marine Life Science
    • /
    • v.8 no.2
    • /
    • pp.104-114
    • /
    • 2023
  • As plastic usage increases globally, the amount of plastic waste entering the marine environment is steadily rising. Microplastics, in particular, can be ingested by marine organisms and accumulated in their digestive tracts, causing harmful effects on their growth and reproduction. Cytochrome P450 (CYP) enzymes are known to metabolize various environmental pollutants as detoxification enzymes, but their role in crustaceans is not well understood. In this study, sequences of nine CYP genes (CYP370A4, CYP370C5 from clan 2; CYP350A1, CYP350C5, CYP361A1 from clan 3; CYP4AN-like, CYP4AP2, CYP4AP3, CYP4C33-like1 from clan 4) were analyzed using conserved domains in the brackish water flea Diaphanosoma celebensis. Additionally, after exposure to three different sizes of polystyrene beads (0.05-, 0.5-, 6-㎛ PS beads; 0.1, 1, and 10 mg/L) for 48 hours, the expression of these nine CYP genes were investigated using real-time reverse transcription polymerase chain reaction (RT-PCR). The results showed that all CYP genes possessed conserved motifs, indicating that D. celebensis CYP has evolutionarily conserved functions. Among these CYP genes, the expression of CYP370C5, CYP360A1, and CYP4C122 showed a significant increase after exposure to 0.05-㎛ PS beads, suggesting their involvement in PS metabolism. This research will contribute to understanding the molecular mode of actions of microplastics on marine invertebrates.

Whitening activity of Ficus carica L. fruits extract through inhibition of tyrosinase and MITF expression (무화과(Ficus carica L.) 열매 추출물의 tyrosinase 및 MITF 발현 억제를 통한 미백 활성)

  • Min Ji Kim;Si Eun Park;Geun soo Lee;Jin Hwa Kim;Sunwoo Kwon;Hyung Seo Hwang
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.204-212
    • /
    • 2023
  • Whitening is inhibitory activity of the melanin synthesis of melanocytes. Recently, whitening materials have been developed on natural materials because of its side effects on skin. Figs (Ficus Carica L.) is a fruit belonging to the Moraceae family and whitening activity was reported in focusing on the fig's stem and leaf components, but whitening activity of the figs fruit was not known. Thus, in this study, we tried to observe its anti-melanogenesis as well as antioxidant and anti-inflammation. The radical scavenging activity of figs fruits extract (FFE) was observed as the level of 34.52±1.98%/60.71±1.26% compared to the control in the its maximum concentration in the DPPH/ABTS assay. Cytotoxicity of FFE was observed at 10% concentration by CCK8 assay, so the maximum concentration was set at 5% and applied to all experiments. FFE concentration dependently decreased NO production associated with inducible nitric oxide synthase, cyclooxygenase-2, interleukin-6 and tumor necrosis factor-α gene expression, these strongly suggesting anti-inflammatory activity. In melanin contents assay, FFE significantly down-regulated melanin production in α-MSH-stimulated B16F10 cell as well as tyrosinase inhibition in vitro. In addition, FFE decreased the Microphthalmia-associated transcription factor (MITF) mRNA expression about 94.34% compared to the α-MSH treatment group in RT-PCR. Finally, FFE significantly reduced the MITF, cAMP response element-binding protein and tyrosinase protein expression in the α-MSH stimulated B16F10 cell. Through these results, we found that FFE can not only directly inhibit tyrosinase enzyme activity but also suppress melanogenesis through regulation of MITF gene expression in α-MSH signal transduction.

Transforming Growth Factor-$\beta$ is a Possible Paracrine Mediator in the Human Endometrial Decidualization (인간자궁내막의 탈락막화 (Decudualization)에 있어서 TGF-$\beta$ (Transforming Growth Factor-$\beta$)의 역할)

  • Park, Dong-Wook;Choi, Dong-Soon;Kim, Mi-Ran;Hwang, Kyung-Joo;Jo, Mi-Yeong;Ahn, Seong-Hee;Min, Churl-K.;Ryu, Hee-Sug
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.1
    • /
    • pp.65-75
    • /
    • 2003
  • Objectives: To investigate the role of TGF (Transforming growth factor-$\beta$) involved in the paracrinic communication during decidualization between UEC (uterine epithelial cells) and USC (uterine stromal cells), we have employed a co-culture system composed of human endometrial epithelial and stromal cells in defined hormonal conditions. Design: In the co-culture, endometrial epithelial cells cultured in the matrigel-coated cell culture insert are seeded on top of the endometrial stromal cells cultured within a collagen gel. The co-culture was maintained for 48 hours under the following hormonal conditions: progesterone dominant condition (100 nM P4 and 1 nM E2) or estrogen-dominant condition (100 nM E2 and 1 nM P4). 10 ng/ ml HGF and/or 10 ng/ml TGF-$\beta$1 are added. Methods: RT-PCR is utilized to detect mRNAs quantitatively. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemical staining are utilized to detect proteins in the tissue. Results: Prolactin mRNA is expressed in the co-cultured stromal cells under the progesterone dominant condition. TGF-$\beta$1 and its receptors are expressed in both the co-cultured epithelial and stromal cells irrespective of the steroid present, which is in contrast with no or negligible expression of TGF-$\beta$1 or its receptor in cells separately cultured. Both estrogen and progesterone significantly elevate the concentration of hepatocyte growth factor (HGF) in the conditioned medium of the co-culture with the value of 4, 325 pg/ml in E2-dominant and 2, 000 pg/ml in P4-dominant condition compare to 150 pg/ml in no hormone. In separately cultured stromal cells, administration of HGF induces the expression of TGF receptor 1 in both hormonal conditions, but induction of TGF receptor 2 is only manifest in the P4-dominant condition. Administration of TGF-$\beta$ and HGF directly induce the decidualization marker prolactin mRNA in separately cultured stromal cells. Conclusion: It is likely that steroid hormones induces prolactin mRNA indirectly by promoting the cell to cell communication between the stromal and the epithelial cells. TGF-$\beta$ and HGF are two possible paracrine mediators in the human endometrial decidualization.

Genomic and Proteomic Analysis of Microbial Function in the Gastrointestinal Tract of Ruminants - Review -

  • White, Bryan A.;Morrison, Mark
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.880-884
    • /
    • 2001
  • Rumen microbiology research has undergone several evolutionary steps: the isolation and nutritional characterization of readily cultivated microbes; followed by the cloning and sequence analysis of individual genes relevant to key digestive processes; through to the use of small subunit ribosomal RNA (SSU rRNA) sequences for a cultivation-independent examination of microbial diversity. Our knowledge of rumen microbiology has expanded as a result, but the translation of this information into productive alterations of ruminal function has been rather limited. For instance, the cloning and characterization of cellulase genes in Escherichia coli has yielded some valuable information about this complex enzyme system in ruminal bacteria. SSU rRNA analyses have also confirmed that a considerable amount of the microbial diversity in the rumen is not represented in existing culture collections. However, we still have little idea of whether the key, and potentially rate-limiting, gene products and (or) microbial interactions have been identified. Technologies allowing high throughput nucleotide and protein sequence analysis have led to the emergence of two new fields of investigation, genomics and proteomics. Both disciplines can be further subdivided into functional and comparative lines of investigation. The massive accumulation of microbial DNA and protein sequence data, including complete genome sequences, is revolutionizing the way we examine microbial physiology and diversity. We describe here some examples of our use of genomics- and proteomics-based methods, to analyze the cellulase system of Ruminococcus flavefaciens FD-1 and explore the genome of Ruminococcus albus 8. At Illinois, we are using bacterial artificial chromosome (BAC) vectors to create libraries containing large (>75 kbases), contiguous segments of DNA from R. flavefaciens FD-1. Considering that every bacterium is not a candidate for whole genome sequencing, BAC libraries offer an attractive, alternative method to perform physical and functional analyses of a bacterium's genome. Our first plan is to use these BAC clones to determine whether or not cellulases and accessory genes in R. flavefaciens exist in clusters of orthologous genes (COGs). Proteomics is also being used to complement the BAC library/DNA sequencing approach. Proteins differentially expressed in response to carbon source are being identified by 2-D SDS-PAGE, followed by in-gel-digests and peptide mass mapping by MALDI-TOF Mass Spectrometry, as well as peptide sequencing by Edman degradation. At Ohio State, we have used a combination of functional proteomics, mutational analysis and differential display RT-PCR to obtain evidence suggesting that in addition to a cellulosome-like mechanism, R. albus 8 possesses other mechanisms for adhesion to plant surfaces. Genome walking on either side of these differentially expressed transcripts has also resulted in two interesting observations: i) a relatively large number of genes with no matches in the current databases and; ii) the identification of genes with a high level of sequence identity to those identified, until now, in the archaebacteria. Genomics and proteomics will also accelerate our understanding of microbial interactions, and allow a greater degree of in situ analyses in the future. The challenge is to utilize genomics and proteomics to improve our fundamental understanding of microbial physiology, diversity and ecology, and overcome constraints to ruminal function.

A molecular systematic study of Korean Iris (Iridaceae) based on RAPD analysis (RAPD에 의한 한국산 붓꽃속(Iris)의 계통분류학적 연구)

  • Park, Seon-Joo;Sim, Jeong-Ki;Park, Hong-Duok
    • Korean Journal of Plant Taxonomy
    • /
    • v.32 no.4
    • /
    • pp.383-396
    • /
    • 2002
  • RAPD analyses were compared for 17 taxa of Korean Iris including the subgenus Sisyrinchium and Belamcanda. Eighty scorable RAPD markers were formed from the PCR reactions using 10 random oligoprimers. In this systematic analyses which used neighbor-joining methods including bootstrapping analyses with genetic coefficients, the Korean Iris were divided into three subgenera (Limniris, Crossiris, Pardanthopsis), or two genera (Limniris, Pardanthopsis). The molecular data agree with the previous classification system that recognized two sections and six series for the subgenus Limniris because the subgenus is comprised of four clades in the RAPD analyses. According to the molecula data, the series Chinensis should be divided into two groups. The minutoaurea group is composed of I. koreana, I. odaesanensis, and I. minitoaurea, while the rossi group is comprised of two varieties of I. rossi. The series Tripetalae is closely allied with the series Sibiricae, whereas the series Ensatae is recognized as a sister group to the series Ruthencae. The molecular phylogeny, which was based on RAPD analysis, for the most part agreed with the data proposed by previous authors. This is because the basis of morphological and ITS sequence data suggests that the RAPD markers should be very useful in addressing phylogenetic questions about the genus Iris.

The Functional Relevance of Prepro-melanin Concentrating Hormone (pMCH) to Skin Color Change, Blind-side Malpigmentation and Feeding of Oliver Flounder Paralichthys olivaceus

  • Kang, Duk-Young;Kim, Hyo-Chan;Kang, Han-Seung
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.3
    • /
    • pp.325-337
    • /
    • 2014
  • To assess the functional structure of prepro-melanin-concentrating hormone (pMCH), we isolated and cloned pMCH (of-pMCH) mRNA from the brain of the olive flounder, Paralichthys olivaceus, and compared its amino acid sequence with those from other animals. In addition, to examine whether activation of the brain of-pMCH gene is influenced by background color, density, and feeding, we compared pMCH mRNA activities against different background colors (bright and dark) and at different densities (100% PCA and 200% PCA). To examine whether the pMCH gene is related with malpigmentation of blind-side skin and appetite, we compared pMCH gene expression between ordinary and hypermelanic flounders, and between feeding and fasting flounders. The of-pMCH cDNA was 405 bp in the open reading frame [ORF] and encoded a protein of 135 amino acids; MCH was 51 bp in length and encoded a protein of 17 amino acids. An obvious single band of the expected size was obtained from the brain and pituitary by RT-PCR. In addition, of-pMCH gene activity was significantly higher in the bright background only at low density (< 100% PCA) making the ocular skin of fish whitening, and in ordinary fish. However, the gene activity was significantly decreased in dark background, at high density (>200% PCA), and in hypermelano fish. These results suggest that skin whitening camouflage of the flounder is induced by high MCH gene activity, and the density disturbs the function of background color in the physiological color change. Moreover, our data suggest that a low level of MCH gene activity may be related to malpigmentation of the blind-side skin. In feeding, although pMCH gene activity was significantly increased by feeding in the white background, the pMCH gene activity in the dark background was not influenced by feeding, indicating that the MCH gene activity increased by feeding can be offset by dark background color, or is unaffected by appetite. In conclusion, this study showed that MCH gene expression is related to ocular-skin whitening camouflage and blind-skin hypermelanosis, and is influenced by background color and density.