• Title/Summary/Keyword: IS-PCR

Search Result 6,351, Processing Time 0.038 seconds

The Usefulness of Spot Urine Protein/Creatinine Ratio in Evaluating Proteinuria in Children and the Correlation between 24-hour Urinary Protein Amount and Spot Urine Protein/Creatinine Ratio (소아 단백뇨 검사에 있어서 단회뇨 단백/크레아티닌 비의 유용성 및 일일 요단백량과의 연관성)

  • Hong, Seon Young;Kim, Ji Young;Chung, Woo Yeong
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.2
    • /
    • pp.173-177
    • /
    • 2003
  • Purpose : Recently, different results about factors affecting accurate quantitation of 24-hr urinary protein(24UP) amount using spot urine protein/creatinine ratio(PCR) have been reported. The current study was designed to evaluate correlation between 24UP amounts and PCR in children, and the effect of 24UP amounts, age, sex, and glomerular filtration rate(GFR) on this correlation. Methods : Among 94 patients who visited the department of pediatrics in Busan Paik Hospital from March 2002 to August 2002, 68 patients whose urinary creatinine excretion was ${\geq}15mg/kg/day$ were included in this study. All the patients were divided into I, II/A, B group(I : 24UP<500 mg/day, II : $24UP{\geq}500mg/day$, A : <10 years of age, B : ${\geq}10years$ of age). Pearson correlation analysis was performed between 24UP and PCR to evaluate the relationship. We defined fractional difference between 24UP and PCR, and then performed multiple regression analysis with 24UP amount, age, GFR and fractional difference. Results : There was a strong positive linear correlation between 24UP and PCR(R=0.936, P<0.0001) in all patients, and the correlation was also good in each group. Using PCR cutoff values of 0.5, the PCR provided high sensitivity, specificity, positive and negative predictive value in predicting 24UP amount ${\geq}500mg$. The factors affecting accurate quantitation of proteinuria using spot urine PCR was age, not 24UP amount, GFR or sex. Conclusion : Spot urine PCR is a useful test but has limitations in predicting 24UP amount. Therefore, it should be used only as screening method. Age-adjusted PCR cutoff values may be necessary to predict 24UP amount in children with proteinuria.

Detection of Serum Hepatitis B Virus DNA According to HBV Markers in Chronic Hepatitis B Liver Disease (만성 B형 간질환에서 간염 B virus 표식자 발현에 따른 DNA의 검출)

  • Lee, Dong-Jun;Choi, Jin-Su;Kim, Joon-Hwan;Lee, Heon-Ju
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.1
    • /
    • pp.155-167
    • /
    • 1997
  • The identification of serum HBV DNA is very important for the assessment of the disease activity in persistent infection, for the evaluation of the infectivity of an individuals blood. The dot blot, however, has limited sensitivity and sometimes inconsistent with other serological markers and clinical settings. Using the most important recent advance in molecular biology, the polymerase chain reaction(PCR), specific DNA sequences can be amplified more than a million-fold in a few hours and with this technique the detection of the extreme low level of DNA is possible. This study was to determine sensitivity of the PCR for the detection of serum HBV DNA in comparison with dot blot analysis and to investigate the serum HBV DNA status and clinical significance of PCR in patients with chronic HBsAg positive liver disease. The subjects of this study were 17 patients with asymptomatic HBsAg carriers(9 HBeAg positive patients, 8 anti-HBe positive patients), 91 chronic hepatitis B(50 HBeAg positive patients, 41 anti-HBe positive patients), 57 liver cirrhosis(21 HBeAg positive patients, 36 anti-HBe positive patients), 27 hepatocellular carcinoma(10 HBeAg positive patients, 17 anti-HBe positive patients). The results were summerized as following; The detection rates of HBV DNA by dot blot, PCR were 58.9%, 72.2% in HBeAg positive patients, 34.3%, 53.9% in anti-HBe positive patients. The detection rates of HBV DNA by PCR in HBeAg negative patients were 25.0% in asymptomatic HBsAg carriers, 61.0% in chronic hepatitis B, 52.8% in liver cirrhosis, 52.9% in hepatocellular carcinoma. The positive rate for HBV DNA is a significant difference between HBeAg positive and negative asymptomatic HBsAg carriers, but not significantly difference in other groups. In conclusions, this study confirmed that the PCR is much more sensitive than the dot blot analysis in detecting the HBV DNA in the sera of patients with chronic liver disease. The presence of HBV DNA in the serum was detected by PCR with higher sensitivity and it suggested that active viral replication is still going on in most patients with chronic HBsAg positive liver disease irrespective of HBeAg/anti-HBe status, and PCR may be used as a prognostic factor in asymptomatic HBsAg carriers.

  • PDF

Molecular Characteristics of Phytophthora katsurae Using PCR-SSCP Analysis (PCR-SSCP 분석에 의한 Phytophthora katsurae의 분자생물학적 특성)

  • Lee, Sun-Keun;Jang, Ha-Na;Lee, Dong-Hyeon;Lee, Sang-Hyun;Lee, Sang-Yong;Lee, Jong-Kyu
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.169-176
    • /
    • 2011
  • Phytophthora katsurae is the fungus responsible for chestnut ink disease. The objectives of this study were to determine if a single-strand conformation polymorphism (SSCP) analysis of rDNA-ITS region, elongation factor 1 alpha gene and ${\beta}$-tubulin gene could be used for rapid identification and genetic diversity of P. katsurae, and to assess the potential use of the SSCP technique as a diagnostic tool for P. katsurae. Each regions amplified by PCR using primers designed to overlap the genus Phytophthora were characterized for the Phytophthora species. PCR products were denatured and electrophoresed for SSCP analysis. P. katsurae isolates showed an unique pattern in SSCP analysis and were easily distinguished from other Phytophthora species used as the control. This indicates that SSCP analysis is an useful technique for distinguishing Phytophthora species from genetically close relatives, and show that the SSCP analysis of each region is an efficient detection tool for P. katsurae. But PCR-SSCP analysis of single-gene may have difficulty in distinguishing P. katsurae from other Phytophthora species. Therefore, PCR-SSCP analysis of multi-genes can be useful for rapid and effective identification of P. katsurae.

Development of Detachable PDMS/Glass PCR-Chip and It's Application to Detection of Male Infertility (분리식 PDMS/유리 중합효소연쇄반응칩 개발 및 유전적 남성불임 검사에의 응용)

  • Ju, Jin-Kyoung;Hwang, Seung-Young;Ahn, Yoo-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.371-377
    • /
    • 2008
  • Our precedent study has reported glass-PDMS (polydimethylsiloxane) based biochip for the gene PCR (polymerase chain reaction). To prevent the contamination of bio sample, the once used biochip must not be used repeatedly. However, the fabrication cost of microheater and microsensor of the biochip was not cheap to use it as a disposable chip. This paper proposes new PCR-chip where the glass substrate integrated with the microheater and microsensor is detachable from the reaction chamber where the sample is injected. That makes it possible to reuse the glass substrate repeatedly. The performance of the proposed detachable PCR-chip was compared with that of the precedent monolithic PCR-chip. The results showed that the SRY (sex determining Y chromosome) gene PCR was successfully performed in the detachable chip compared with the monolithic chip. However, the more efforts to improve the efficiency of surface treatment of PDMS chip are needed to increase the possibility of applying the detachable chip to the detecting of male infertility.

Characterization of beer-spoilage microorganism and its rapid detection by specific PCR primer (맥주오염미생물의 동정과 specific PCR primer의한 신속한 검출 방법)

  • Lee, Taek-In;Choi, Shin-Geon
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.141-147
    • /
    • 2008
  • Several contaminated bacteria such as Lactobacillus brevis and Pediococcus damnosus in beer production cause beer spoilage by producing off flavours and turbidity. Detection of these organisms is complicated by the strict anaerobic conditions and lengthy incubation times required for their cultivation, consequently there is a need for more rapid detection methods. Recently, two contaminated strains were isolated from vessel of beer production and identified as Lactobacillus species by API kit identificaton as well as 16S-23S ITS sequencing analyses. Two isolated strains were named as Lactobacillus sp. HLA1 and Lactobacillus HLB2, respectively. A polymerase chain reaction (PCR) method was developed for the rapid and specific detection of Lactobacillus sp.. Two sets of primer pairs (HLA1-F/HLA1-R and HLB2-F/HLB2-R) were designed for the amplification of a 1576 base pair (bp) fragment of the HLA1 16S-23S rRNA gene and 1888 bp fragement of the HLB2 16S-23S rRNA. Amplified PCR products were highly specific to detect corresponding bacteria when other contaminated strains were used as PCR templates. However, detection of both strains were limited when $100{\mu}{\ell}$ of cultured samples were mixed with $100m{\ell}$ of beer sample in arbitrary manner. The sensitivity of the assay still needs to be improved for direct detection of the small amounts of bacteria present in beer.

  • PDF

Optimization of DNA Extraction from a Single Living Ciliate for Stable and Repetitive PCR Amplification

  • Kim, Se-Joo;Min, Gi-Sik
    • Animal cells and systems
    • /
    • v.13 no.3
    • /
    • pp.351-356
    • /
    • 2009
  • Ciliates are undoubtedly one of the most diverse protozoans that play a significant role in ecology. However, molecular examination, based on comparing the DNA sequences, has been done on a limited number of the species. Because most ciliates are uncultivable and their population sizes are often too small, it is usually difficult to obtain sufficient genomic DNA required for PCR based experiments. In the present study, we evaluated the effectiveness of four commercial DNA extraction procedures that extract high quality genomic DNA from a single ciliate cell. It was discovered that RED Extract-N-$Amp^{TM}$ PCR kit is the best method for removing PCR-inhibiting substances and minimizing DNA loss during purification. This method can also amplify more than 25 reactions of PCR. In addition, this technique was applied to single cells of 19 species belonged to 7 orders under 5 classes that isolated from mixed natural populations. Their small subunit ribosomal DNA (SSU rDNA) was successfully amplified. In summary, we developed a simple technique for the high-yield extraction of purified DNA from a single ciliate cell that may be more useful for rare ciliates, such as tiny and uncultivable marine microbes.

PCR-mediated Recombination of the Amplification Products of the Hibiscus tiliaceus Cytosolic Glyceraldehyde-3-phosphate Dehydrogenase Gene

  • Wu, Linghui;Tang, Tian;Zhou, Renchao;Shi, Suhua
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.172-179
    • /
    • 2007
  • PCR-mediated recombination describes the process of in vitro chimera formation from related template sequences present in a single PCR amplification. The high levels of genetic redundancy in eukaryotic genomes should make recombination artifacts occur readily. However, few evolutionary biologists adequately consider this phenomenon when studying gene lineages. The cytosolic glyceraldehyde-3-phosphate dehydrogenase gene (GapC), which encodes a NADP-dependent nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase in the cytosol, is a classical lowcopy nuclear gene marker and is commonly used in molecular evolutionary studies. Here, we report on the occurrence of PCR-mediated recombination in the GapC gene family of Hibiscus tiliaceus. The study suggests that recombinant areas appear to be correlated with DNA template secondary structures. Our observations highlight that recombination artifacts should be considered when studying specific and allelic phylogenies. The authors suggest that nested PCR be used to suppress PCRmediated recombination.

Evaluation of Potential Reference Genes for Quantitative RT-PCR Analysis in Fusarium graminearum under Different Culture Conditions

  • Kim, Hee-Kyoung;Yun, Sung-Hwan
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.301-309
    • /
    • 2011
  • The filamentous fungus Fusarium graminearum is an important cereal pathogen. Although quantitative realtime PCR (qRT-PCR) is commonly used to analyze the expression of important fungal genes, no detailed validation of reference genes for the normalization of qRT-PCR data has been performed in this fungus. Here, we evaluated 15 candidate genes as references, including those previously described as housekeeping genes and those selected from the whole transcriptome sequencing data. By a combination of three statistical algorithms (BestKeeper, geNorm, and NormFinder), the variation in the expression of these genes was assessed under different culture conditions that favored mycelial growth, sexual development, and trichothecene mycotoxin production. When favoring mycelial growth, GzFLO and GzUBH expression were most stable in complete medium. Both EF1A and GzRPS16 expression were relatively stable under all conditions on carrot agar, including mycelial growth and the subsequent perithecial induction stage. These two genes were also most stable during trichothecene production. For the combined data set, GzUBH and EF1A were selected as the most stable. Thus, these genes are suitable reference genes for accurate normalization of qRT-PCR data for gene expression analyses of F. graminearum and other related fungi.

Sensitive, Accurate PCR Assays for Detecting Harmful Dinoflagellate Cochlodinium polykrikoides Using a Specific Oligonucleotide Primer Set

  • Kim Chang-Hoon;Park Gi-Hong;Kim Keun-Yong
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.3
    • /
    • pp.122-129
    • /
    • 2004
  • Harmful Cochlodinium polykrikoides is a notorious harmful algal bloom (HAB) species that is causing mass mortality of farmed fish along the Korean coast with increasing frequency. We analyzed the sequence of the large subunit (LSD) rDNA D1-D3 region of C. polykrikoides and conducted phylogenetic analyses using Bayesian inference of phylogeny and the maximum likelihood method. The molecular phylogeny showed that C. polykrikoides had the genetic relationship to Amphidinium and Gymnodinium species supported only by the relatively high posterior probabilities of Bayesian inference. Based on the LSU rDNA sequence data of diverse dinoflagellate taxa, we designed the C. polykrikoides-specific PCR primer set, CPOLY01 and CPOLY02 and developed PCR detection assays for its sensitive, accurate HAB monitoring. CPOLY01 and CPOLY02 specifically amplified C. polykrikoides and did not cross-react with any dinoflagellates tested in this study or environmental water samples. The effective annealing temperature $(T_{p})$ of CPOLY01 and CPOLY02 was $67^{\circ}C$. At this temperature, the conventional and nested PCR assays were sensitive over a wide range of C. polykrikoides cell numbers with detection limits of 0.05 and 0.0001 cells/reaction, respectively.

The effects of testosterone propionate, dihydrotestosterone, nandrolone decanoate on the levels of phosphocreatine and creatine in the mouse seminal vesicle (Testosterone propionate, dihydrotestosterone, nandrolone decanoate가 마우스 정낭선의 phosphocreatine과 creatine의 농도에 미치는 영향)

  • Lee, Hang
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.2
    • /
    • pp.263-270
    • /
    • 1995
  • Creatine(Cr) and phosphocreatine(PCr), the important mediators of intracellular high-energy phosphate buffer system, were found in the tissues of mouse seminal vesicle and also in the extracellular fluids of seminal vesicle secretion. This study was performed m confirm that the secretion and accumulation of Cr and PCr is regulated by testosterone and its $5{\alpha}$-reduced metabolite, $5{\alpha}$-dihydrotestosterone(DHT). In addition, the effect of nandrolone decanoate(ND), a synthetic anabolic steroid, on the levels of Cr and PCr in the seminal vesicle was compared with those of testosterone propionate(TP) and DHT. Male Swiss-Webster mice were castrated and three groups of the castrates were treated with daily injection(sc) of same molar dose($1.45{\times}10^{-8}mol/g\;BW$) of TP, DHT, or ND. All three androgens rapidly increased weights of seminal vesicle tissue and fluid, and also increased concentrations of Cr and PCr in the tissue and fluid. However, ND was least effective in increasing seminal vesicle weights, whereas ND was as effective as, or in some cases, more effective than, TP or DHT in increasing Cr and PCr levels in the tissue and fluid. The results confirm that the accumulation of Cr and PCr in the seminal vesicles is regulated by testosterone and DHT, and also suggest that the effects of androgens on seminal vesicle growth and secretory activity may be differentiated.

  • PDF