• Title/Summary/Keyword: IRTS

Search Result 8, Processing Time 0.027 seconds

Responsivity of IRTS/FILM in Orbit

  • Oh S.H.;Nakagawa T.;Kwon S.M.;Pak S.;Lee H.M.;Jeong W.S.;Makiuti S.;Pearson C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.28 no.2
    • /
    • pp.28-28
    • /
    • 2003
  • PDF

Observation of the Cosmic Near-Infrared Background with the CIBER rocket

  • Kim, Min-Gyu;Matsumoto, T.;Lee, Hyung-Mok;Arai, T.;Battle, J.;Bock, J.;Brown, S.;Cooray, A.;Hristov, V.;Keating, B.;Korngut, P.;Lee, Dae-Hee;Levenson, L.R.;Lykke, K.;Mason, P.;Matsuura, S.;Nam, U.W.;Renbarger, T.;Smith, A.;Sullivan, I.;Wada, T.;Zemcov, M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.42-42
    • /
    • 2012
  • The First stars (Pop.III stars) in the universe are expected to be formed between the recombination era at z - 1100 and the most distant quasar (z - 8). They have never been directly detected due to its faintness so far, but can be observed as a background radiation at around 1${\mu}m$ which is called the Cosmic Near-Infrared Background (CNB). Main part of the CNB is thought to be redshifted Lyman-alpha from gas clouds surrounding the Pop.III stars. Until now, the COBE (COsmic Background Explorer) and the IRTS (Infrared Telescope in Space) observed excess emission over the background due to galaxies. To confirm the COBE and the IRTS results and pursue more observational evidences, we carried out the sounding rocket experiment named the Cosmic Infrared Background ExpeRiment (CIBER). The CIBER is successfully launched on July 10, 2010 at White Sands Missile Range, New Mexico, USA. It consists of three kinds of instruments. We report the results obtained by LRS (Low Resolution Spectrometer) which is developed to fill the uncovered spectrum around 1${\mu}m$. LRS is a refractive telescope of 5.5 cm aperture with spectral resolution of 20 - 30 and wavelength coverage of 0.7 to 2.0${\mu}m$. After subtracting foreground components (zodiacal light, integrated star light and diffuse galactic light) from the sky brightness of observed five fields, there remained significant residual emission (even for the lower limit case) consistent with the IRTS and the COBE results. In addition, there exists a clear gap at 0.7 - 0.8${\mu}m$ in the CNB spectrum over the background due to galaxies according to recent results (Matsuoka et al. 2011; Mattila et al. 2011). The origin of the excess emission could be ascribed to the Pop.III stars with its active era of z = 7 - 10.

  • PDF

A Study on the Protecting of Personal Information in Offline Transactions : Focused on the Housing Lease Agreements (오프라인 거래에서 개인정보 보호방안 : 주택임대차계약을 중심으로)

  • Kim, HyoSeok;Park, Soon-Tai;Kim, Yong-Min
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.2
    • /
    • pp.243-252
    • /
    • 2020
  • Recently, the proportion of housing lease has been increasing to an overwhelming level in line with the increase of single-person households and the change in the form of housing. In the normal case, the use of rental-type housing is subject to a housing lease agreement through a licensed real estate agent. In the event of a transaction conclusion, licensed real estate agent shall issue a contract containing the personal information of the lessee, the renter, and the licensed real estate agent to the transaction party. In this case, it is necessary for the lessee to provide the contract to a third party. This paper analyzes relevant laws and regulations and the status of housing transactions, focusing on personal information processed between offline housing lease agreements. And when issuing a contract through IRTS, we propose a way to protect personal information by providing a third party in three forms: information Data Subject-based, Purpose of usage-based De-identification, and Certificate of Contract.

DIFFUSE [CII] 158 MICRON LINE EMISSION FROM THE INTERSTELLAR MATTER AT HIGH GALACTIC LATITUDE

  • MATSUHARA H.;TANAKA M.;KAWADA M.;MAKIUTI S.;MATSUMOTO T.;NAKAGAWA T.;OKUDA H.;SHIBAI H.;HIROMOTO N.;OKUMURA K.;LANGE A. E.;BOCK J. J.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.171-172
    • /
    • 1996
  • We present the results of an rocket-borne observation of far-infrared [CII] line at 157.7 ${\mu}m$ from the diffuse inter-stellar medium in the Ursa Major. We also introduce a part of results on the [CII] emission recently obtained by the IRTS, a liquid-helium cooled 15cm telescope onboard the Space Flyer Unit. From the rocket-borne observation we obtained the cooling rate of the diffuse HI gas due to the [CII] line emission, which is $1.3{\pm}0.2 {\times} 10^{-26}$ $ergss^{-1} H^{-1}_{atom}$. We also observed appreciable [CII] emission from the molecular clouds, with average CII/CO intensity ratio of 420. The IRTS observation provided the [CII] line emission distribution over large area of the sky along great circles crossing the Galactic plane at I = $50^{\circ}$ and I = $230^{\circ}$. We found two components in their intensity distributions, one concentrates on the Galactic plane and the another extends over at least $20^{\circ}$ in Galactic latitude. We ascribe one component to the emission from the Galactic disk, and the another one to the emission from the local interstellar gas. The [CII] cooling rate of the latter component is $5.6 {\pm} 2.2 {\times}10$.

  • PDF

Method of MBT Movement Modeling for Performance Analysis of SRMD System (근거리 미사일방어시스템 성능분석을 위한 전차 구동 모델링 기법)

  • Ha, Jong-Soo;Cho, Kyu-Gong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.173-180
    • /
    • 2011
  • SRMD system which protects MBT from the threats in a short range is composed of 2 radars, 2 IRTs 1 CCU and 2 countermeasures. To analyze the performance of this system, there is a need to make the model of MBT on which this system is loaded. In this paper, a method of MBT movement modeling is proposed to fulfill the above need. The methods of the coordinate system transformation among the components and the modeling of a hull's traveling and a turret's turning are proposed. The method of the modeling of a pose variation caused by the vibrations is proposed and the results of the modeling are presented.

Methodology of System Alignment using Angular Error Compensation Among Multi-Axes (다중 좌표계간 각도오차 보정을 통한 체계정렬 기법)

  • Ha, Jong-Soo;Lee, Eui-Hyuk;Lee, Hyun-Ah;Park, Gyu-Churl;Cho, Kyu-Gong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.342-349
    • /
    • 2014
  • MRDS is a short range missile/rocket defense system which protects a main battle tank(MBT) from threats in a short range. It is composed of 2 radars, 2 infrared trackers(IRTs), 1 fire control computer(FCC), 2 launchers and countermeasures. To guarantee the performance of the MRDS, these components have to be mounted on the vehicle with the known positions and directions and it is required to compensate the alignment errors. In this paper, a system alignment method using angular error compensation is proposed to install its components within a tolerance on the MBT. The test results are presented to evaluate and verify the effectiveness of the proposed method.

MIRIS: Science Programs

  • Jeong, Woong-Seob;Matsumoto, Toshio;Seon, Kwangil;Pyo, Jeonghyun;Lee, Dae-Hee;Park, Youngsik;Ree, Chang Hee;Moon, Bongkon;Park, Sung-Joon;Nam, Uk-Won;Park, Jang-Hyun;Lee, Duk-Hang;Cha, Sang-Mok;Lee, Sungho;Yuk, In-Soo;Ahn, Kyungjin;Cho, Jungyeon;Lee, Hyung Mok;Han, Wonyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.97.2-97.2
    • /
    • 2012
  • The main payload of Science and Technology Satellite 3 (STSAT-3), Multipurpose InfraRed Imaging System (MIRIS) is the first Korean infrared space mission to explore the near-infrared sky with a small astronomical instrument developed by KASI. The 8-cm passively cooled telescope with a wide field of view (3.67 deg. ${\times}$ 3.67 deg.) will be operated in the wavelength range from 0.9 to $2{\mu}m$. It will carry out wide-band imaging and the Paschen-${\alpha}$ emission line survey. After the calibration of MIRIS in our laboratory, MIRIS has been delivered to SaTReC and successfully assembled into the STSAT-3. The main purposes of MIRIS are to perform the observation of Cosmic Infrared Background (CIB) at two wide spectral bands (I and H band) and to survey the Galactic plane at $1.88{\mu}m$ wavelength, the Paschen-${\alpha}$ emission line. CIB observation enables us to reveal the nature of degree-scale CIB fluctuation detected by the IRTS (Infrared Telescope in Space) mission and to measure the absolute CIB level. The MIRIS will continuously monitor the seasonal variation of the zodiacal light towards the both north and south ecliptic poles for the purpose of calibration as well as the effective removal of zodiacal light. The Pashen-${\alpha}$ emission line survey of Galactic plane helps us to understand the origin of Warm Ionized Medium (WIM) and to find the physical properties of interstellar turbulence related to star formation. Here, we also discuss the observation plan with MIRIS.

  • PDF

MIRIS Science Missions

  • Jeong, Woong-Seob;Matsumoto, Toshio;Seon, Kwang-Il;Lee, Dae-Hee;Ree, Chang-Hee;Park, Young-Sik;Nam, Uk-Won;Pyo, Jeong-Hyun;Moon, Bong-Kon;Park, Sung-Joon;Cha, Sang-Mok;Park, Jang-Hyun;Lee, Duk-Hang;Lee, Sung-Ho;Yuk, In-Soo;Ahn, Kyung-Jin;Cho, Jung-Yeon;Lee, Hyung-Mok;Han, Won-Yong
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.26.4-27
    • /
    • 2010
  • The main payload of STSAT-3 (Science and Technology Satellite 3), MIRIS (Multipurpose InfraRed Imaging System) is the first Korean infrared space mission to explore the near-infrared sky with a small astronomical instrument, which is being developed by KASI. The 8-cm passively cooled telescope with a wide field of view (3.67 deg. $\times$ 3.67 deg.) will be operated in the wavelength range from 0.9 to $2{\mu}m$. It will carry out wide field imaging and the emission line survey. The main purposes of MIRIS are to perform the Cosmic Infrared Background (CIB) observation at two wide spectral bands (I and H band) and to survey the Galactic plane at $1.88{\mu}m$ wavelength, the Paschen-$\alpha$ emission line. CIB observation enables us to reveal the nature of degreescale CIB fluctuation detected by the IRTS (Infrared Telescope in Space) mission and to measure the absolute CIB level. The Pashen-$\alpha$ emission line survey of Galactic plane helps us to understand the origin of Warm Ionized Medium (WIM) and to find the physical properties of interstellar turbulence related to star formation. Here, we also discuss the observation plan with MIRIS.

  • PDF