• Title/Summary/Keyword: IRIDIUM

Search Result 259, Processing Time 0.021 seconds

Synthesis and Structure of 1,2,3,4,5-Pentamethylcyclopentadienyl-1,4-Diphenyltetraazabutadiene Complexes of Rhodium and Iridium

  • Paek ,Cheolki;Ko, Jaejung;Kang, Sangook;Patrick J.Carrol
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.432-436
    • /
    • 1994
  • Monomeric rhodium and iridium-diaryltetrazene complexes $Cp^*$M(RNN=NNR)($Cp^*$=1,2,3,4,5-pentamethylcyclope ntadienyl; M=Rh, Ir; R=Ph, 4-tolyl) have been synthesized from [$Cp^*MCl_2]_2$(M=Rh, Ir) and 2 equiv. of $[Li(THF)_x]_2(RN_4$R) in benzene. We have determined the crystal structure of (${\eta}^5$-pentamethylcyclopentadienyl)diphenyltetrazene iridium by using graphite-monochromated Mo-$K_a$ radiation. The compound was crystallized in the monoclinic space group $P2_{1/c}$ with a=13.781(3), b=9.035(l), c=17.699(3) ${\AA}$, and ${\beta}=111.93(l)^{\circ}$. An X-ray crystal structure of complex 1 showed a short N(2)-N(3) distance ($1.265 {\AA}$) consistent with the valence tautomer A with Ir(III) rather than Ir(I). All complexes are highly colored and decompose on irradiation at 254 nm. Electrochemical studies show that complex 1 displays a quasi-reversible reduction.

Cationic Iridium(I) Complex of Ethyl Cinnamate and Hydrogenation of Unsaturated Esters with Iridium(I)-Perchlorato Complex

  • Yang, Kyung-Joon;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.466-468
    • /
    • 1986
  • Reaction of $Ir(ClO_4)(CO)(PPh_3)_2$ with trans-$C_6H_5CH$ = $CHCO_2C_2H_5$ produces a new cationic iridium(I) complex, [Ir (trans-$C_6H_5CH$ = $CHCO_2C_2H_5)(CO)(PPh_3)_2]ClO_4$ where trans-$C_6H_5CH$ = $CHCO_2C_2H_5$ seems to be coordinated through the carbonyl oxygen rather than through the $\pi$-system of the olefinic group according to the spectral data. It has been found that Ir$(ClO_4)(CO)(PPh_3)_2$ catalyzes the hydrogenation of $CH_2$ = $CHCO_2C_2H_5$, trans-$CH_3CH$ = $CHCO_2C_2H_5$ and trans-$C_6H_5CH$ = $CHCO_2C_2H_5$ to $CH_3CH_2CO_2C_2H_5$, $CH_3CH_2CH_2CO_2C_2H_5$ and $C_6H_5CH_2CH_2CO_2C_2H_5$, respectively at room temperature under the atmospheric pressure of hydrogen. The relative rates of the hydrogenation of the unsaturated esters are mostly understood in terms of steric reasons.

Syntheses and Reactions of Iridium Complexes Containing Mixed Phosphine-Olefin Ligand: (3-(Diphenylphosphino)propyl)(3-butenyl)phenylphosphine

  • Young-ae W. Park;Devon W. Meek
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.524-528
    • /
    • 1995
  • The reaction of [IrCl(cod)]2 with ppol ligand, Ph2PCH2CH2CH2P(Ph)CH2CH2CH=CH2, in ethanol gives an iridium complex, whose structure is converted from an ionic form, [Ir(cod)(ppol)]Cl·2C2H5OH (1),in polar solvents (ethanol, methanol and acetonitrile), to a molecular form, [IrCl(cod)(ppol)], in non-polar solvents (benzene and toluene). The cationic complexes, [Ir(cod)(ppol)]AsF6·1/2C2H5OH and [Ir(cod)(ppol)]PF6·1/2CH3CN, were prepared to compare with the ionic form by 31P NMR spectroscopy. When carbon monoxide is introduced to 1, cod is replaced by CO to give the 5-coordinated complex, [IrCl(CO)(ppol)]. Hydrogenation of 1-octene was not successful in the presence of 1. In order to verify the reason for 1 not behaving as a good catalyst for hydrogenation, electrophilic reactions with HCl, I2 and HBF4·etherate were performed, which yielded the oxidative addition product, [IrHCl2(ppol)], the substitution product, [IrI(cod)(ppol)], and another cationic product, [Ir(cod)(ppol)]BF4, respectively. Thus, the iridium complex is not sufficiently basic to activate hydrogen atoms or the olefin of the ppol ligand.

1,4-Dicyanobutene Bridged Binuclear Iridium (I, III) Complexes and Their Catalytic Activities

  • Park, Hwa-Kun;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.185-189
    • /
    • 1987
  • Reactions of $Ir(ClO)_4(CO)(PPh_3)_2$ with dicyano olefins, cis-NCCH = CH$CH_2$$CH_2$CN (cDC1B), trans-NCCH = CH$CH_2$$CH_2$CN (tDC1B), trans-NC$CH_2$CH = CH$CH_2$CN (tDC2B), and NC$CH_2$$CH_2$$CH_2$$CH_2$CN (DCB) produce binuclear dicationic iridium (I) complexes, $[(CO)(PPh_3)_2Ir-NC-A-CN-Ir(PPh_3)_2(CO)](ClO_4)_2$ (NC-A-CN = cDC1B (1a), tDC1B (1b), tDC2B (1c), DCB (1d)). Complexes 1a-1d react with hydrogen to give binuclear dicationic tetrahydrido iridium (Ⅲ ) complexes, $[(CO)(PPh_3)_2(H)_2Ir-NC-A-CN-Ir(H)_2(PPh_3)_2(CO)](ClO_4)_2$ (NC-A-CN = cDC1B (2a), tDC1B (2b), tDC2B (2c), DCB (2d)). Complexes 2a and 2b catalyze the hydrogenation of cDC1B and tDC1B, respectively to give DCB, while the complex 2c is catalytically active for the isomerization of tDC2B to give cDC1B and tDC1B and the hydrogenation of tDC2B to give DCB at $100^{\circ}C$.

High sensitivity determination of iridium contents in ultra-basic rocks by INAA with coincidence gamma-ray detection

  • Ebihara, Mitsuru;Shirai, Naoki;Kuwayama, Jin;Toh, Yosuke
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.423-428
    • /
    • 2022
  • Very low contents (in the range of 10-9 g/g) of Ir in mantle-derived rock samples (komatiites) were non-destructively determined by INAA coupled with coincidence gamma-ray spectrometry using 16 Ge detectors. Aliquots of the same samples were analyzed by NiS fire-assay ICP-MS for Ir and other platinum group elements. Because the INAA procedure used in this study is non-destructive and is almost free from spectral interference in gamma-ray spectrometry, the INAA values of Ir contents obtained in this study can be highly reliable. Iridium values obtained by ICP-MS were consistent with the INAA values, implying that the ICP-MS values of Ir obtained in this study are equally reliable. Under the present experimental conditions, detection limits were estimated to be 1 pg/g, which corresponds to 0.1 pg for a sample mass of 0.1 g. These levels can be even lowered by an order of magnitude, if necessary, which cannot be achieved by ICP-MS carried out in this study.

A Study on the Sediment Transport using Radioisotope Tracer (방사성동위원소 추적자를 이용한 표사이동 추적실험)

  • Choi Byung-Jong;Jung Sung-Hee;Kim Jong-Bum;Lee Jong-Sup
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.3
    • /
    • pp.162-170
    • /
    • 2004
  • On the basis of the radiotracer technology and the related equipments which have been developed for its industrial application through the nuclear long-term research project, a radiotracer study on sediment transport was carried out as a part of the development of the radiotracer technology for a coastal environment. The crystalline material doped with iridium having a similar composition and specific gravity as those of the bedload sand collected from the research area was produced by the oxide-route method. A radioisotope container was specially designed to inject the radiotracer from 1 m above the sea bedload without radioactive contamination during the transport from the nuclear reactor at KAERI. The position data from the DGPS and the radiation measurement data were collected concurrently and stored by means of the application software programmed with the LabVIEW of the National Instrument. The position data was reprocessed to represent the real position of the radiation probe under water and not that of the DGPS antenna on board. The time dependency of the spatial distribution of the sediment was studied in the area through three tracking measurements after the iridium glass was injected. This trial application showed the potential of the radiotracer technology as an important role for maintaining and developing the coastal environment in the future.

A Study on the Evaluation of Radiation Safety in Opened-Ceiling-Facilities for Radiography Testing (천장 개방형 RT 사용시설의 방사선 안전성 평가 연구)

  • Sung-Hoe, Heo;Won-Seok, Park;Seung-Uk, Heo;Byung-In, Min
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.741-749
    • /
    • 2022
  • Radiography-Testing that verify the quality of welding structures without destruction are overwhelmingly used in industries, but many safety precautions are required as radiation is used. The workers for Radiography-Testing perform the inspection by moving the Iridium-192 radiation source embedded in the transport container of the gamma-ray irradiator within or outside the facility. The general facility is completely blocked about radiation from the outside with thick concrete, but if it is difficult for worker to handle object of inspection, facilities ceiling can be opened. A general facility may be constructed using a theoretical dose evaluation method because all exterior facilities are blocked, but if the ceiling is open, it is not appropriate to evaluate radiation safety with a simple theoretical calculation method due to the skyshine effect. Therefore, in this study, the radiation safety of the facility was evaluated in the actual field through an ion chamber survey-meter and an accumulated dose-meter called as OSLD, and the actual evaluation environment was modeled and evaluated using the Monte Carlo simulation code as FLUKA. According to the direction of the irradiation, the radiation dose at the facility boundary was difficult to meet the standards set by the regulatory authority, and radiation safety could be secured through additional methods. In addition, it was confirmed that the simulation results using the Iridium-192 source were valid evaluation with the actual measured results.