• 제목/요약/키워드: IRF

검색결과 134건 처리시간 0.026초

위성 탑재 영상레이다 첩 신호의 전치왜곡 보상을 위한 포락선 샘플링 및 보간 필터 기반의 설계 기법 (A Design Method for Pre-Distortion Compensation of SAR Chirp Signal based on Envelop Sampling and Interpolation Filter)

  • 이영복
    • 한국군사과학기술학회지
    • /
    • 제25권4호
    • /
    • pp.347-354
    • /
    • 2022
  • The synthetic aperture radar(SAR) is an equipment that can acquire images in all weathers day and night based on radar signals. The on-board processor of satellite SAR generates transmission signal by digital signal processing, converts it into an analog signal and transmits to antenna. Until the transmission signal generated by on-board processor is output, the signal passes the transmission cables and analog devices. At this time, these hardware distort the signal and makes SAR performance worse. To improve the performance, pre-distortion technique is used. But, general pre-distortion using taylor series is not sufficient to compensate for the distortion. This paper suggests transmit signal design method with improved pre-distortion. This paper uses envelop sampling method and interpolation filter for frequency domain compensation. The proposed method accurately compensates the hardware distortion and reduces resource usage of FPGA. To analyze proposed method's performance, IRF characteristics are compared when the proposed method applies to signal with errors.

Evaluation of the Immune Response Following Exposure of Mice to Bisphenol A: Induction of Th1 Cytokine and Prolactin by BPA Exposure in the Mouse Spleen Cells

  • Youn, Ji-Youn;Park, Hyo-Young;Lee, Jung-Won;Jung, In-Ok;Choi, Keum-Hwa;Kim, Kyung-Jae;Cho, Kyung-Hea
    • Archives of Pharmacal Research
    • /
    • 제25권6호
    • /
    • pp.946-953
    • /
    • 2002
  • Bisphenol A [2, 2 bis (4-hydoxyphenyl) propane; BPA] is a widely used endocrine disruptors and has estrogenic: activities. Although interests on biological effect of BPA are rising, evidences of its effect on immune system are lacking. We investigated that the effect of BPA on immune parameters to postulate the mechanism, and BPA interruptions between neuroendocrine and immune system. BPA was administrated to mice by p.o. (as a drinking water) dose on 0.015, 1.5 and 30 mg/ml for 4 weeks. The BPA treatment did not result in any change in body weight, spleen weight and distribution of lymphocyte subpopulation collected from spleen. BPA induced prolactin production in spleen, and exposure of SPA increased the activity of splenocyte proliferation in response to Con A (p<0.001). The production of a strong Th-1 type cytokine ($IFN-{\gamma}$) was induced while Th-2 type (IL-4) was suppressed by SPA treatment. These were consistent with RT-PCR results of transcription factor GATA-3 and IRF-1. These findings suggested that stimulation of prolactin production by estrogenic effects of SPA would affect cytokine profiles, and lead to imbalanced cellular immune response. In addition, we could speculate that prolactin and cytokine is important mediator involved in network between neuroendocrine and immune system by BPA.

Ribosomal Protein L19 and L22 Modulate TLR3 Signaling

  • Yang, Eun-Jeong;Seo, Jin-Won;Choi, In-Hong
    • IMMUNE NETWORK
    • /
    • 제11권3호
    • /
    • pp.155-162
    • /
    • 2011
  • Background: Toll-like receptor 3 (TLR3) recognizes double-stranded RNA (dsRNA) and induces inflammation. In this study we attempted to ascertain if there are endogenous host molecules controlling the production of cytokines and chemokines. Two candidates, ribosomal protein L19 and L22, were analyzed to determine if they influence cytokine production followed by TLR3 activation. In this study we report that L19 acts upon production of IP-10 or IL-8 differently in glioblastoma cells. Methods: L19 or L22 was transfected into HEK293-TLR3, A549 or A172 cells. After treatment with several inhibitors of NF-${\kappa}B$, PI3K, p38 or ERK, production of IL-8 or IP-10 was measured by ELISA. siRNA was introduced to suppress expression of L19. After Vesicular stomatitis virus infection, viral multiplication was measured by western blot. Results: L19 increased ERK activation to produce IL-8. In A172 cells, in which TLR3 is expressed at endosomes, L19 inhibited interferon regulatory factor 3 (IRF3) activation and IP-10 production to facilitate viral multiplication, whereas L19 inhibited viral multiplication in A549 cells bearing TLR3 on their cell membrane. Conclusion: Our results suggest that L19 regulates TLR3 signaling, which is cell type specific and may be involved in pathogenesis of autoimmune diseases and chronic inflammatory diseases.

Expression Analyses Revealed Thymic Stromal Co-Transporter/Slc46A2 Is in Stem Cell Populations and Is a Putative Tumor Suppressor

  • Kim, Ki Yeon;Lee, Gwanghee;Yoon, Minsang;Cho, Eun Hye;Park, Chan-Sik;Kim, Moon Gyo
    • Molecules and Cells
    • /
    • 제38권6호
    • /
    • pp.548-561
    • /
    • 2015
  • By combining conventional single cell analysis with flow cytometry and public database searches with bioinformatics tools, we extended the expression profiling of thymic stromal cotransporter (TSCOT), Slc46A2/Ly110, that was shown to be expressed in bipotent precursor and cortical thymic epithelial cells. Genome scale analysis verified TSCOT expression in thymic tissue- and cell type- specific fashion and is also expressed in some other epithelial tissues including skin and lung. Coexpression profiling with genes, Foxn1 and Hoxa3, revealed the role of TSCOT during the organogenesis. TSCOT expression was detected in all thymic epithelial cells (TECs), but not in the $CD31^+$endothelial cell lineage in fetal thymus. In addition, ABC transporter-dependent side population and Sca-$1^+$ fetal TEC populations both contain TSCOT-expressing cells, indicating TEC stem cells express TSCOT. TSCOT expression was identified as early as in differentiating embryonic stem cells. TSCOT expression is not under the control of Foxn1 since TSCOT is present in the thymic rudiment of nude mice. By searching variations in the expression levels, TSCOT is positively associated with Grhl3 and Irf6. Cytokines such as IL1b, IL22 and IL24 are the potential regulators of the TSCOT expression. Surprisingly, we found TSCOT expression in the lung is diminished in lung cancers, suggesting TSCOT may be involved in the suppression of lung tumor development. Based on these results, a model for TEC differentiation from the stem cells was proposed in context of multiple epithelial organ formation.

GMM Panel VAR를 이용하여 R&D가 기업 가치에 영향을 미치기까지의 시간 측정 연구 (Analysis of R&D Time Lag in impacting Firm Value: GMM- PVAR Study)

  • 양인선
    • 한국산학기술학회논문지
    • /
    • 제17권7호
    • /
    • pp.63-76
    • /
    • 2016
  • R&D 연구 투자의 문제점의 하나는 불확실성이 크다는 점이다. 이러한 불확실성이 기업에는 많은 부담을 주는 요인이 될 수 있다. 이러한 면에서 R&D 투자가 기업 가치에 양(+)의 영향을 미치기까지의 시간을 측정할 수 있는 연구의 필요성이 있다고 보여진다. 본 연구는 GMM-PVAR(Panel Vector Autoregression) IRF(Impulse Response function)를 사용하여 1900년부터 2015년까지 한국거래소의 코스피와 코스닥시장에 상장된 기업을 대상으로 R&D 투자가 기업가치에 양(+)의 영향을 미치기까지 걸리는 시간을 측정 하였다. 또한 기업의 재무적 특성 변수 중 기업의 크기, 성장 가능성, 그리고 산업 집중율이 R&D 투자가 기업가치에 양(+) 영향을 미치기까지 걸리는 시간을 단축시킨다는 점을 발견하였다. 그것은 이들 재무적 특성변수 들이 R&D 투자와 기업가치간의 관계에 긍정적인 영향을 미칠수록 즉 경쟁이 심화될수록 크기가 클수록 시간이 단축되며 작은 기업의 경우는 성장 가능성이 높을수록 시간이 단축되는 경향을 보였다. 흥미 있는 점은 큰 기업들의 경우에는 성장가능성이 낮은 기업들이 성장가능성이 높은 기업들보다 더 큰 양의 결과를 보였다.

OASL1 Traps Viral RNAs in Stress Granules to Promote Antiviral Responses

  • Kang, Ji-Seon;Hwang, Yune-Sahng;Kim, Lark Kyun;Lee, Sujung;Lee, Wook-Bin;Kim-Ha, Jeongsil;Kim, Young-Joon
    • Molecules and Cells
    • /
    • 제41권3호
    • /
    • pp.214-223
    • /
    • 2018
  • Oligoadenylate synthetase (OAS) protein family is the major interferon (IFN)-stimulated genes responsible for the activation of RNase L pathway upon viral infection. OAS-like (OASL) is also required for inhibition of viral growth in human cells, but the loss of one of its mouse homolog, OASL1, causes a severe defect in termination of type I interferon production. To further investigate the antiviral activity of OASL1, we examined its subcellular localization and regulatory roles in IFN production in the early and late stages of viral infection. We found OASL1, but not OASL2, formed stress granules trapping viral RNAs and promoted efficient RLR signaling in early stages of infection. Stress granule formation was dependent on RNA binding activity of OASL1. But in the late stages of infection, OASL1 interacted with IRF7 transcripts to inhibit translation resulting in down regulation of IFN production. These results implicate that OASL1 plays context dependent functions in the antiviral response for the clearance and resolution of viral infections.

Gambogic Acid Disrupts Toll-like Receptor4 Activation by Blocking Lipopolysaccharides Binding to Myeloid Differentiation Factor 2

  • Lee, Jin Young;Lee, Byung Ho;Lee, Joo Young
    • Toxicological Research
    • /
    • 제31권1호
    • /
    • pp.11-16
    • /
    • 2015
  • Our body's immune system has defense mechanisms against pathogens such as viruses and bacteria. Immune responses are primarily initiated by the activation of toll-like receptors (TLRs). In particular, TLR4 is well-characterized and is known to be activated by gram-negative bacteria and tissue damage signals. TLR4 requires myeloid differentiation factor 2 (MD2) as a co-receptor to recognize its ligand, lipopolysaccharides (LPS), which is an extracellular membrane component of gram-negative bacteria. Gambogic acid is a xanthonoid isolated from brownish or orange resin extracted from Garcinia hanburyi. Its primary effect is tumor suppression. Since inflammatory responses are related to the development of cancer, we hypothesized that gambogic acid may regulate TLR4 activation. Our results demonstrated that gambogic acid decreased the expression of pro-inflammatory cytokines ($TNF-{\alpha}$, IL-6, IL-12, and $IL-1{\beta}$) in both mRNA and protein levels in bone marrow-derived primary macrophages after stimulation with LPS. Gambogic acid did not inhibit the activation of Interferon regulatory factor 3 (IRF3) induced by TBK1 overexpression in a luciferase reporter gene assay using IFN-${\beta}$-PRD III-I-luc. An in vitro kinase assay using recombinant TBK1 revealed that gambogic acid did not directly inhibit TBK1 kinase activity, and instead suppressed the binding of LPS to MD2, as determined by an in vitro binding assay and confocal microscopy analysis. Together, our results demonstrate that gambogic acid disrupts LPS interaction with the TLR4/MD2 complex, the novel mechanism by which it suppresses TLR4 activation.

Zika Virus-Encoded NS2A and NS4A Strongly Downregulate NF-κB Promoter Activity

  • Lee, Jeong Yoon;Nguyen, Thi Thuy Ngan;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권11호
    • /
    • pp.1651-1658
    • /
    • 2020
  • Since Zika virus (ZIKV) was first detected in Uganda in 1947, serious outbreaks have occurred globally in Yap Island, French Polynesia and Brazil. Even though the number of infections and spread of ZIKV have risen sharply, the pathogenesis and replication mechanisms of ZIKV have not been well studied. ZIKV, a recently highlighted Flavivirus, is a mosquito-borne emerging virus causing microcephaly and the Guillain-Barre syndrome in fetuses and adults, respectively. ZIKV polyprotein consists of three structural proteins named C, prM and E and seven nonstructural proteins named NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 in an 11-kb single-stranded positive sense RNA genome. The function of individual ZIKV genes on the host innate immune response has barely been studied. In this study, we investigated the modulations of the NF-κB promoter activity induced by the MDA5/RIG-I signaling pathway. According to our results, two nonstructural proteins, NS2A and NS4A, dramatically suppressed the NF-κB promoter activity by inhibiting signaling factors involved in the MDA5/RIG-I signaling pathway. Interestingly, NS2A suppressed all components of MDA5/RIG-I signaling pathway, but NS4A inhibited most signaling molecules, except IKKε and IRF3-5D. In addition, both NS2A and NS4A downregulated MDA5-induced NF-κB promoter activity in a dosedependent manner. Taken together, our results suggest that NS2A and NS4A signifcantly antagonize MDA5/RIG-I-mediated NF-κB production, and these proteins seem to be controlled by different mechanisms. This study could help understand the mechanisms of how ZIKV controls innate immune responses and may also assist in the development of ZIKV-specific therapeutics.

Ginsenoside Rp1, a Ginsenoside Derivative, Blocks Promoter Activation of iNOS and COX-2 Genes by Suppression of an IKKβ-mediated NF-κB Pathway in HEK293 Cells

  • Shen, Ting;Lee, Jae-Hwi;Park, Myung-Hwan;Lee, Yong-Gyu;Rho, Ho-Sik;Kwak, Yi-Seong;Rhee, Man-Hee;Park, Yung-Chul;Cho, Jae-Youl
    • Journal of Ginseng Research
    • /
    • 제35권2호
    • /
    • pp.200-208
    • /
    • 2011
  • Ginsenoside (G) $Rp_1$ is a ginseng saponin derivative with anti-cancer and anti-inflammatory activities. In this study, we examined the mechanism by which G-$Rp_1$ inhibits inflammatory responses of cells. We did this using a strategy in which DNA constructs containing cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) promoters were transfected into HEK293 cells. G-$Rp_1$ strongly inhibited the promoter activities of COX-2 and iNOS; it also inhibited lipopolysaccharide induced upregulation of COX-2 and iNOS mRNA levels in RAW264.7 cells. In HEK293 cells G-$Rp_1$ did not suppress TANK binding kinase 1-, Toll-interleukin-1 receptor-domain-containing adapter-inducing interferon-${\beta}$ (TRIF)-, TRIF-related adaptor molecule (TRAM)-, or activation of interferon regulatory factor (IRF)-3 and nuclear factor (NF)-${\kappa}$B by the myeloid differentiation primary response gene (MyD88)-induced. However, G-$Rp_1$ strongly suppressed NF-${\kappa}$B activation induced by I${\kappa}$B kinase (IKK)${\beta}$ in HEK293 cells. Consistent with these results, G-$Rp_1$ substantially inhibited IKK${\beta}$-induced phosphorylation of $I{\kappa}B{\alpha}$ and p65. These results suggest that G-$Rp_1$ is a novel anti-inflammatory ginsenoside analog that can be used to treat IKK${\beta}$/NF-${\kappa}$B-mediated inflammatory diseases.

Design and Implementation of PIC/FLC plus SMC for Positive Output Elementary Super Lift Luo Converter working in Discontinuous Conduction Mode

  • Muthukaruppasamy, S.;Abudhahir, A.;Saravanan, A. Gnana;Gnanavadivel, J.;Duraipandy, P.
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1886-1900
    • /
    • 2018
  • This paper proposes a confronting feedback control structure and controllers for positive output elementary super lift Luo converters (POESLLCs) working in discontinuous conduction mode (DCM). The POESLLC offers the merits like high voltage transfer gain, good efficiency, and minimized coil current and capacitor voltage ripples. The POESLLC working in DCM holds the value of not having right half pole zero (RHPZ) in their control to output transfer function unlike continuous conduction mode (CCM). Also the DCM bestows superlative dynamic response, eliminates the reverse recovery troubles of diode and retains the stability. The proposed control structure involves two controllers respectively to control the voltage (outer) loop and the current (inner) loop to confront the time-varying ON/OFF characteristics of variable structured systems (VSSs) like POESLLC. This study involves two different combination of feedback controllers viz. the proportional integral controller (PIC) plus sliding mode controller (SMC) and the fuzzy logic controller (FLC) plus SMC. The state space averaging modeling of POESLLC in DCM is reviewed first, then design of PIC, FLC and SMC are detailed. The performance of developed controller combinations is studied at different working states of the POESLLC system by MATLAB-Simulink implementation. Further the experimental corroboration is done through implementation of the developed controllers in PIC 16F877A processor. The prototype uses IRF250 MOSFET, IR2110 driver and UF5408 diodes. The results reassured the proficiency of designed FLC plus SMC combination over its counterpart PIC plus SMC.