• Title/Summary/Keyword: IR-Sensor

Search Result 432, Processing Time 0.028 seconds

Fabrication and characterization of fine pitch IR image sensor using a-Si (비정질 실리콘을 이용한 미세 피치 적외선 이미지 센서 제조 및 특성)

  • Kim, Kyoung-Min;Kim, Byeong-Il;Kim, Hee-Yeoun;Jang, Won-Soo;Kim, Tae-Hyun;Kang, Tai-Young
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.130-136
    • /
    • 2010
  • The microbolometer array sensor with fine pitch pixel array has been implemented to the released amorphous silicon layer supported by two contact pads. For the design of focal plane mirror with geometrical flatness, the simple beam test structures were fabricated and characterized. As the beam length decreased, the effect of beam width on the bending was minimized, Mirror deformation of focal plane in a real pixel showed downward curvature by residual stress of a-Si and Ti layer. The mirror tilting was caused by the mis-align effect of contact pad and confirmed by FEA simulation results. The properties of bolometer have been measured as such that the NETD 145 mK, the TCR -2 %/K, and thermal time constant 1.99 ms.

Three-Dimensional Conjugate Heat Transfer Analysis for Infrared Target Modeling (적외선 표적 모델링을 위한 3차원 복합 열해석 기법 연구)

  • Jang, Hyunsung;Ha, Namkoo;Lee, Seungha;Choi, Taekyu;Kim, Minah
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.411-416
    • /
    • 2017
  • The spectral radiance received by an infrared (IR) sensor is mainly influenced by the surface temperature of the target itself. Therefore, the precise temperature prediction is important for generating an IR target image. In this paper, we implement the combined three-dimensional surface temperature prediction module against target attitudes, environments and properties of a material for generating a realistic IR signal. In order to verify the calculated surface temperature, we are using the well-known IR signature analysis software, OKTAL-SE and compare the result with that. In addition, IR signal modeling is performed using the result of the surface temperature through coupling with OKTAL-SE.

Electrochemical Non-Enzymatic Glucose Sensor based on Hexagonal Boron Nitride with Metal-Organic Framework Composite

  • Ranganethan, Suresh;Lee, Sang-Mae;Lee, Jaewon;Chang, Seung-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.379-385
    • /
    • 2017
  • In this study, an amperometric non-enzymatic glucose sensor was developed on the surface of a glassy carbon electrode by simply drop-casting the synthesized homogeneous suspension of hexagonal boron nitride (h-BN) nanosheets with a copper metal-organic framework (Cu-MOF) composite. Comprehensive analytical methods, including field-emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), cyclic voltammetry, electrochemical impedance spectroscopy, and amperometry, were used to investigate the surface and electrochemical characteristics of the h-BN-Cu-MOF composite. The FE-SEM, FT-IR, and XRD results showed that the h-BN-Cu-MOF composite was formed successfully and exhibited a good porous structure. The electrochemical results showed a sensor sensitivity of $18.1{\mu}A{\mu}M^{-1}cm^{-2}$ with a dynamic linearity range of $10-900{\mu}M$ glucose and a detection limit of $5.5{\mu}M$ glucose with a rapid turnaround time (less than 2 min). Additionally, the developed sensor exhibited satisfactory anti-interference ability against dopamine, ascorbic acid, uric acid, urea, and nitrate, and thus, can be applied to the design and development of non-enzymatic glucose sensors.

Development of automatic illumination controller for energy saving (에너지 절약형 자동조명 장치 개발)

  • 최명호;강형곤;김민기;한병성
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.1027-1032
    • /
    • 1996
  • The auto-illumination controller for office, residence, and so on was studied. The system consists of parts of a power supply, a signal oscillator, a lamp controller and two kinds of sensor. The lamp controller has two thyristors triggered by the IR sensor(SCRI) and CdS sensor(SCR2) respectively, When the illuminance around this system is higher than operating value of its sensor, lamp is turned off automatically. Otherwise, the light of lamp gets dim by CdS sensor. In case IR sensor senses the body heat of people around itself, the illuminance of the lamp gets maximum. The illuminance of the lamp can be changed dimmly by control of the variable resistor (RV) connected with SCR2 in series. The turning - on time of the lamp can be also controlled using a variable resistor(Rt) connected with a signal oscillator in parallel. Changing resistance Rt changes the time constant(.tau.), which triggers the gate of SCR2. Though people left the surrounding of lamp, the lamp keeps light for a while.

  • PDF

Numerical Investigation of Temperature Uniformity and Estimation Accuracy for MEMS-based Black Body System (MEMS 기반 흑체 시스템의 온도 균일도 및 추정 정확도의 수치 해석적 검토)

  • Chae, Bong-Geon;Kim, Tae-Gyu;Lee, Jong-Kwang;Kang, Suk-joo;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.455-462
    • /
    • 2016
  • Output Characteristics of the spaceborn image sensor such as infrared(IR) sensor are varied according to time elapses and sensor repetition on/off operation. As a result, the quality of IR sensor image is decreased. Therefore, spaceborne image sensor require a periodic calibration using a black body system by correcting a non-uniformity of the sensor. In this paper, we proposed a MEMS-based black body system that can implement the high temperature uniformity at various standard temperatures ranging from low to high temperature and easily estimate the representative surface temperature. In addition, it has advantages lightweight, low-power and high accuracy. The feasibility of the proposed MEMS-based black body system was verified through the thermal analysis.

Indoor Navigation System for Visually Impaired Persons Using Camera and Range Sensors (카메라와 거리센서를 이용한 시각장애인 실내 보행안내 시스템)

  • Lee, Jin-Hee;Shin, Byeong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.4
    • /
    • pp.517-528
    • /
    • 2011
  • In this paper, we propose an indoor navigation system that can do walk safely to the destination for visually impaired persons. The proposed system analyzes images taken with the camera finds the ID of the marker to identify the absolute position of the pedestrian. Using the distance and angle obtained from IMU(Inertial Measurement Unit) accelerometer sensor and a gyro sensor, the system decides the relative position of a pedestrian for the previous position to determine the next direction. At the same time, we simplify a complex spatial structure in front of user by means of ultrasonic sensors and determine an avoidance direction by estimating the patterns. Then, it uses a few IR(Infrared Rays) sensors to detect stair. Our system offers position of visually impaired persons incorporating multiple sensors and helps users to arrive to destination safely.

The Growth Characteristics of ${\beta}\;-FeSi_2$ as IR-sensor Device for Detecting Pollution Material : The Usage of the Ferrocene-Plasma

  • Kim, Kyung-Soo;Jung, II-Hyun
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.2
    • /
    • pp.102-111
    • /
    • 2000
  • As IR-sensor for detecting pollution material, the iron silicide has a fit band gap, high physicochemical stability at high temperature and good acid resistance. The growing film was formed with the Fe-Si bond and the organic compound because plasma resolved the injected precursors into various active species. In the Raman scattering spectrum, the Fe-Si vibration mode showed at 250 {TEX}$cm^{-1}${/TEX}. The FT-IR peak indicated that the various organic compounds were deposited on the films. The iron silicide was epitaxially grown to β-phase by the high energy of plasma. The lattice structure of films had [220]/[202] and [115]. The thickness of the films increased with the flow rate of silane. But rf-power increased with decreasing the thickness. The optical gap energy and the band gap were shown about 3.8 eV and 1.182∼1.194 eV. The band gap linearly increased and the formula was below: {TEX}$E_g^{dir}${/TEX}= 8.611×{TEX}$10^{-3}N_{D}${/TEX}+1.1775

  • PDF

Imaging Performance Analysis of an EO/IR Dual Band Airborne Camera

  • Lee, Jun-Ho;Jung, Yong-Suk;Ryoo, Seung-Yeol;Kim, Young-Ju;Park, Byong-Ug;Kim, Hyun-Jung;Youn, Sung-Kie;Park, Kwang-Woo;Lee, Haeng-Bok
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.174-181
    • /
    • 2011
  • An airborne sensor is developed for remote sensing on an aerial vehicle (UV). The sensor is an optical payload for an eletro-optical/infrared (EO/IR) dual band camera that combines visible and IR imaging capabilities in a compact and lightweight package. It adopts a Ritchey-Chr$\'{e}$tien telescope for the common front end optics with several relay optics that divide and deliver EO and IR bands to a charge-coupled-device (CCD) and an IR detector, respectively. The EO/IR camera for dual bands is mounted on a two-axis gimbal that provides stabilized imaging and precision pointing in both the along and cross-track directions. We first investigate the mechanical deformations, displacements and stress of the EO/IR camera through finite element analysis (FEA) for five cases: three gravitational effects and two thermal conditions. For investigating gravitational effects, one gravitational acceleration (1 g) is given along each of the +x, +y and +z directions. The two thermal conditions are the overall temperature change to $30^{\circ}C$ from $20^{\circ}C$ and the temperature gradient across the primary mirror pupil from $-5^{\circ}C$ to $+5^{\circ}C$. Optical performance, represented by the modulation transfer function (MTF), is then predicted by integrating the FEA results into optics design/analysis software. This analysis shows the IR channel can sustain imaging performance as good as designed, i.e., MTF 38% at 13 line-pairs-per-mm (lpm), with refocus capability. Similarly, the EO channel can keep the designed performance (MTF 73% at 27.3 lpm) except in the case of the overall temperature change, in which the EO channel experiences slight performance degradation (MTF 16% drop) for $20^{\circ}C$ overall temperate change.

Properties of glass fiber by adding $Ga_2O_3$ in the $SiO_2-PbO-K_2O-Al_2O_ 3$ system for infrared sensor ($Ga_2O_3$ 첨가에 따른 $SiO_2-PbO-K_2O-Al_2O_ 3$계 적외선 센서용 glass fiber의 특성)

  • 이명원;윤상하;강원호
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.1047-1052
    • /
    • 1996
  • In this study, the thermal and optical proper-ties of multicomponent oxide glass fiber for IR sensor by adding heavy metal oxide Ga$_{2}$O$_{3}$ were investigated. The fiber samples were made by rod-in tube method. The optical loss of fiber was measured in 0.3-1.8/M wavelength region. As Ga$_{2}$O$_{3}$ increased up to 12wt%, the transition and softening temperature of bulk glass were increased from 495.deg. C to 564.deg. C and from 548.deg. C to 612.deg. C respectively. Whereas the thermal expansion coefficient was decreased from 102 to 88.2*10$^{-7}$ /.deg. C. The refractive index was increased from 1.621 to 1.662, and IR cut-off wavelength was enlarged from 4.64.mu.m to 5.22.mu.m. The optical loss of fiber was decreased and more remarkably decreased in 1.146.mu.m-1.8.mu.m wavelength region.

  • PDF