• Title/Summary/Keyword: IR temperature sensor

Search Result 101, Processing Time 0.031 seconds

Temperature Dependency of Non-dispersive Infrared Carbon Dioxide Gas Sensor by using Infrared Sensor for Compensation (보상용 적외선 센서를 사용한 비분산 적외선 이산화탄소 센서의 온도특성)

  • Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.124-130
    • /
    • 2016
  • NDIR $CO_2$ gas sensor was built with ASIC implemented thermopile sensor which included temperature sensor and unique elliptical waveguide structures in this paper. The temperature dependency of dual infrared sensor module ($CO_2$ and reference IR sensors) has been characterized and its output voltage characteristics according to the temperature and gas concentration were proposed for the first time. NDIR $CO_2$ gas and reference IR sensors showed linear output voltages according to the variation of ambient temperatures from 243 K to 333 K and their slopes were 14.2 mV/K and 8.8 mV/K, respectively. The output voltages of temperature sensor also presented a linear dependency according to the ambient temperature and could be described with V(T)=-3.191+0.0148T(V). The output voltage ratio between $CO_2$ and reference IR sensors revealed irrelevant to the changes of ambient temperatures and gave a constant value around 1.6255 with standard deviation 0.008 at 0 ppm. The output voltage of $CO_2$ gas sensor at zero ppm $CO_2$ gas consisted of two components; one is caused by the HPB (half pass-band) of IR filter and the other is attributed to the part of $CO_2$ absorption wavelength. The characteristics of output voltages of $CO_2$ gas sensor could be accurately modeled with three parameters which are dependent upon the ambient temperatures and represented small average error less than 1.5% with 5% standard deviation.

Temperature Compensation of Nondispersive Infrared Gas Senor: Infrared Light Absorbance (비분산 적외선 가스 센서 온도 보상법: 적외선 흡수도)

  • Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.36-41
    • /
    • 2021
  • The motivation of this paper is to easily analyze the properties of nondispersive infrared gas sensor that has more than two different optical path length and to suggest the criterion and definition of infrared light absorbance in order to minimize the measurement errors. With the output voltage ratios and the normalized derivatives of infrared ray (IR) absorbance, when the normalized derivatives of IR absorbance decreases from 0.28 to 0.10, the lower and higher limits of errors were decreased from -5.62% and 2.39% to -4.27% and 2.78%. When the normalized derivatives of IR absorbance were 0.10, the output voltage could be partitioned into two regions with one exponential equation and the temperature compensation error was less than 5%.

Study on IR Signature Characteristics for different Transmittance over the Korean South Sea during Summer and Winter Seasons (거제도 해양의 여름 및 겨울철 환경에서 거리에 따른 대기투과도를 고려한 함정의 적외선 신호 특성 분석)

  • Choi, Jun-Hyuk;Kim, Jung-Ho;Jung, In-Hwa;Lee, Phil-Ho;Kim, Tae-Kuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.320-327
    • /
    • 2010
  • The IR signature data of a ship is mainly affected by location, meteorological conditions(atmosphere temperature, wind direction and velocity, humidity etc.), atmospheric transmittance, solar position and ship surface temperature etc. The IR signatures received by a remote sensor at a given temperature and wavelength region is consisted of the self-emitted component directly from the object surface, the reflected component of the solar irradiation at the object surface, and the scattered component by the atmosphere without ever reaching the object surface. Computer simulations for prediction of the IR signatures of ships are very useful to examine the effects of various sensor positions. In this paper, we have acquired the IR signature for different sensor positions by using computer program for prediction of the IR signatures. The numerical results show that the IR signature contrast as compared to the background sea considering the meteorological conditions, solar and sky irradiations.

A Study on the Best Applicationsof Infra-Red(IR) Sensors Mounted on the Unmanned Aerial Vehicles(UAV) in Agricultural Crops Field (무인기 탑재 열화상(IR) 센서의 농작물 대상 최적 활용 방안 연구)

  • Ho-Woong Shon;Tae-Hoon Kim;Hee-Woo Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1073-1082
    • /
    • 2023
  • Thermal sensors, also called thermal infrared wavelength sensors, measure temperature based on the intensity of infrared signals that reach the sensor. The infrared signals recognized by the sensor include infrared wavelength(0.7~3.0㎛) and radiant infrared wavelength(3.0~100㎛). Infrared(IR) wavelengths are divided into five bands: near infrared(NIR), shortwave infrared(SWIR), midwave infrared(MWIR), longwave infrared(LWIR), and far infrared(FIR). Most thermal sensors use the LWIR to capture images. Thermal sensors measure the temperature of the target in a non-contact manner, and the data can be affected by the sensor's viewing angle between the target and the sensor, the amount of atmospheric water vapor (humidity), air temperature, and ground conditions. In this study, the characteristics of three thermal imaging sensor models that are widely used for observation using unmanned aerial vehicles were evaluated, and the optimal application field was determined.

Infrared Light Absorbance: a New Method for Temperature Compensation in Nondispersive Infrared CO2 Gas Sensor

  • Yi, Seung Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.303-311
    • /
    • 2020
  • Nondispersive infrared CO2 gas sensor was developed after the simulation of optical cavity structure and assembling the optical components: IR source, concave reflectors, Fresnel lens, a hollow disk, and IR detectors. By placing a hollow disk in front of reference IR detector, the output voltages are almost constant value, near to 70.2 mV. The absorbance of IR light, Fa, shows the second order of polynomial according to ambient temperatures at 1,500 ppm. The differential output voltages and the absorbance of IR light give a higher accuracy in estimations of CO2 concentrations with less than ± 1.5 % errors. After implementing the parameters that are dependent upon the ambient temperatures in microcontroller unit (MCU), the measured CO2 concentrations show high accuracies (less than ± 1.0 %) from 281 K to 308 K and the time constant of developed sensor is about 58 sec at 301 K. Even though the estimation errors are relatively high at low concentration, the developed sensor is competitive to the commercial product with a high accuracy and the stability.

Thermal Performance Test of the On-Board Blackbody System in the orbital environment for Non-Uniformity Correction of an Infrared Sensor (적외선 센서 교정용 위성 탑재 흑체 시스템의 궤도 환경 열성능 평가 시험)

  • Pil-Gyeong, Choi;Hye-In, Kim;Hyun-Ung, Oh;Byung-Cheol, Yoo;Kyoung-Muk, Lee;Jin-Suk, Hong
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.90-98
    • /
    • 2022
  • The output of an infrared (IR) sensor mounted on an EO/IR payload is known to change during a mission period in an orbital environment. As it is required to calibrate the output of the IR sensor periodically to obtain high-quality images, an on-board black body system is mounted on the payload. All systems operating in the space environment require performance tests on ground to verify the target performance in the orbital environment. Therefore, it is also required to test the black body system to verify the performance of the surface temperature uniformity and the estimated representative temperature error within the target temperature range in the operating environment. In this study, calibration of the estimated representative temperature error and verification of the thermal performance of the black body system were conducted by performed a performance test in the thermal vacuum chamber applying deep space radiation cooling effect of an orbital environment.

Three-Dimensional Conjugate Heat Transfer Analysis for Infrared Target Modeling (적외선 표적 모델링을 위한 3차원 복합 열해석 기법 연구)

  • Jang, Hyunsung;Ha, Namkoo;Lee, Seungha;Choi, Taekyu;Kim, Minah
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.411-416
    • /
    • 2017
  • The spectral radiance received by an infrared (IR) sensor is mainly influenced by the surface temperature of the target itself. Therefore, the precise temperature prediction is important for generating an IR target image. In this paper, we implement the combined three-dimensional surface temperature prediction module against target attitudes, environments and properties of a material for generating a realistic IR signal. In order to verify the calculated surface temperature, we are using the well-known IR signature analysis software, OKTAL-SE and compare the result with that. In addition, IR signal modeling is performed using the result of the surface temperature through coupling with OKTAL-SE.

Nondestructive Detection of Defect in a Pipe Using Thermography

  • Choi, Hee-Seok;Joung, Ok-Jin;Kim, Young-Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1413-1416
    • /
    • 2005
  • An infrared temperature sensor module developed for the detection of defects in a plate was modified to use in a cylinder. A set of optical fiber leads and a mechanism maintaining sensor-object distance constant were utilized for the modification of the IR sensor module. The detection performance was experimentally investigated, and the measured temperature was also compared with computed temperature distribution. The experimental outcome indicates that the detection of a simulated defect is readily available. The temperature distribution is better for defect detection than that with the previous device. In addition, the measured distribution is comparable to the calculated one using a heat conduction equation. The developed device of defect detection is suitable to be utilized in chemical processes where most of vessels and piping systems are in the shape of a cylinder.

  • PDF

Black Body Design and Verification for Non-Uniformity Correction of Imaging Sensor and Uncertainty Analysis (영상센서의 비균일 응답특성 보정을 위한 흑체 설계 및 성능검증과 보정오차 분석)

  • Shin, Somin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.240-245
    • /
    • 2013
  • Each pixel of InfraRed(IR) sensor differently responds to IR light as time elapses or the sensor on/off operation is repeated. As a result, the quality of IR sensor image is deteriorated, and therefore NUC(Non-uniformity Correction) is periodically needed for IR sensor. In this paper, in order to perform NUC in the Satellite, on-board V-grooved blackbody is designed with a baffle so that the emissivity of black body is to be higher than 0.995 as well as the temperature deviation is less than $1^{\circ}C$ in the range of the infrared wave length from 3.3 to $5.2{\mu}m$. To check its performance, the emissivity and the surface temperature of the blackbody by TRT(Transfer Reference Thermometer) and IR Micrometer scanner are measured, respectively. From the results, black body design is verified and the uncertainty of NUC is estimated through the measurement results.

Reduced Graphene Oxide Field-Effect Transistor for Temperature and Infrared Sensing

  • Trung, Tran Quang;Tien, Nguyen Thanh;Kim, Do-Il;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.552-552
    • /
    • 2012
  • We fabricated reduced graphene oxide field-effect transistor (RGO-FET) on glass for highly sensitive temperature and IR detection. The device has the channels of RGO responsive to physical stimuli such as temperature and IR. The RGO sensing layers are fabricated from exfoliated graphene oxide sheets that are deposited to form a thin continuous network by electrostatic assembly. These graphene oxide networks are reduced toward reduce graphene oxide by exposure to a hydrazine hydrate vapor. To improve performance and eliminate interferences from oxygen and water vapor absorption to electrical properties of RGO-FET, the sensor devices were encapsulated by the tetratetracontane layer after annealing treatment. The device with encapsulation layer showed lower hysteresis, improved stability, and better repeatability. The temperature response of RGO-FET is examined by measuring changing the temperature, the device exhibited the high sensitivity and repeatability even with the temperature interval of 1 K. We also demonstrated that our devices have capability of IR sensing.

  • PDF