• Title/Summary/Keyword: IR lens

Search Result 68, Processing Time 0.029 seconds

A Study on Influence of PV and Ra with Re-Ir Coating of WC Core Surface for Glass Molding Lens (성형용 초경합금(WC) 코어면의 Re-Ir 코팅이 형상정도와 표면조도에 미치는 영향에 관한 연구)

  • Kim, Hyun-Uk;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.808-811
    • /
    • 2007
  • Aspheric glass lens have recently been used in camera phone module because they are more effective than spherical ones. In this paper, the grinding condition of the tungsten carbide molding core has been found after applying DOE to the development of the aspheric glass lens for the 3 Megapixel and 2.5x camera-phone module. Also, the ultra precision grinding process was investigated under this condition by experiment. Re-Ir coating was applied on the ground surface of the tungsten carbide molding core. The influence of Re-Ir coating on the form accuracy and surface roughness of molding core was compared and evaluated. The form accuracy and surface roughness of the molding core were improved by application of Re-Ir coating on the surface of the tungsten carbide molding core.

Automatic Focus Control for Assembly Alignment in a Lens Module Process (렌즈 모듈 생산 공정에서 조립 정렬을 위한 자동 초점 제어)

  • Kim, Hyung-Tae;Kang, Sung-Bok;Kang, Heui-Seok;Cho, Young-Joon;Park, Nam-Gue;Kim, Jin-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.70-77
    • /
    • 2010
  • This study proposed an auto focusing method for a multi-focus image in assembling lens modules in digital camera phones. A camera module in a camera phone is composed of a lens barrel, an IR glass, a lens mount, a PCB board and aspheric lenses. Alignment among the components is one of the important factors in product quality. Auto-focus is essential to adjust image quality of an IR glass in a lens holder, but there are two focal points in the captured image due to thickness of IR glass. So, sharpness, probability and a scale factor are defined to find desired focus from a multi-focus image. The sharpness is defined as clarity of an image. Probability and a scale factors are calculated using pattern matching with a registered image. The presented algorithm was applied to a lens assembly machine which has 5 axes, two vacuum chucks and an inspection system. The desired focus can be determined on the local maximum of the sharpness, the probability and the scale factor in the experiment.

Elution Properties of Naringin from Soft Contact Lens Containing Naringin (나린진(naringin)이 함유된 소프트 콘택트렌즈에서 나린진의 용출 특성)

  • Ryu, Geun-Chang;Jun, Jin;Jin, Moon-Seok;Chae, Soo-Chul;Kim, In-Suk
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.45-50
    • /
    • 2008
  • Purpose: A soft contact lens was manufactured by adding naringin known as natural anti-bacterial material to resin solution. With solution eluted from manufactured contact lens, we examined its optical properties, physical and chemical states of naringin in the polymer, and elution properties. Methods: The soft contact lens with naringin was synthesized by bulk polymerization method. IR spectrum and HPLC were used to define the bonding type of naringin itself in the soft contact lens contained naringin, elution process of naringin to the saline solution, and the amount of naringin solution eluted from the lens with elapsed time. Results: Naringin was continuously eluted with constant concentration from the soft contact lens for about a month and the structure ofnaringin which is eluted was as same as before it was added to resin solution. Any change in optical properties such as transmittance couldn't be found. Bonding state and the structure of naringin in contact lens were explained with IR spectrum and HPLC results. Conclusions: In the contact lens with naringin, naringin remained in the contact lens bonding with weak hydrogen bonding and/or van der Waals force between naringin and polymer. Naringin was continuously eluted from the contact lens contained naringin during about 1 month. Even after 1 month, it showed that the concentration of the naringin eluted was approximately 10 ppm in a day. From the results, adding naringin to the soft contact lens resin is very effective method for manufacturing the soft contact lens which has anti-bacterial function for a period of time.

  • PDF

Infrared Dual-field-of-view Optical System Design with Electro-Optic/Laser Common-aperture Optics

  • Jeong, Dohwan;Lee, Jun Ho;Jeong, Ho;Ok, Chang Min;Park, Hyun-Woo
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.241-249
    • /
    • 2018
  • We report a midinfrared dual-field-of-view (FOV) optical system design for an airborne electro-optical targeting system. To achieve miniaturization and weight reduction of the system, it has a common aperture and fore-optics for three different spectral wavelength bands: an electro-optic (EO) band ($0.6{\sim}0.9{\mu}m$), a midinfrared (IR) band ($3.6{\sim}4.9{\mu}m$), and a designation laser wavelength ($1.064{\mu}m$). It is free to steer the line of sight by rotating the pitch and roll axes. Our design co-aligns the roll axis, and the line of sight therefore has a fixed entrance pupil position for all optical paths, unlike previously reported dual-FOV designs, which dispenses with image coregistration that is otherwise required. The fore-optics is essentially an achromatized, collimated beam reducer for all bands. Following the fore-optics, the bands are split into the dual-FOV IR path and the EO/laser path by a beam splitter. The subsequent dual-FOV IR path design consists of a zoom lens group and a relay lens group. The IR path with the fore-optics provides two stepwise FOVs ($1.50^{\circ}{\times}1.20^{\circ}$ to $5.40^{\circ}{\times}4.32^{\circ}$), due to the insertion of two Si lenses into the zoom lens group. The IR optical system is designed in such a way that the location and f-number (f/5.3) of the cold stop internally provided by the IR detector are maintained when changing the zoom. The design also satisfies several important performance requirements, including an on-axis modulation transfer function (MTF) that exceeds 10% at the Nyquist frequency of the IR detector pitch, with distortion of less than 2%.

Coating Effect of Molding Core Surface by DLC and Re-Ir Coating (DLC 및 Re-Ir 코팅에 의한 성형용 코어면의 코팅 효과)

  • Kim, Hyun-Uk;Cha, Du-Hwan;Lee, Dong-Kil;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.51-56
    • /
    • 2009
  • Recently, with the increasing lightness and miniaturization of high resolution camera phones, the demand for aspheric glass lens has increased because plastic and spherical lens are unable to satisfy the required performance. An aspheric glass lens is fabricated by the high temperature and pressure molding using a tungsten carbide molding core, so precision grinding and coating technology for the molding core surface are required. This study investigates the effect of diamond-like carbon (DLC) and rhenium-iridium (Re-Ir) coating For aspheric molding core surface. The grinding conditions of the tungsten carbide molding core were obtained by design of experiments (DOE) for application in the ultra precision grinding process of the tungsten carbide molding core of the aspheric glass lens used in 5 megapixel, $4{\times}$ zoom camera phone modules. A tungsten carbide molding core was fabricated under this grinding condition and coated with the DLC and Re-Ir coating. By measurements, the effect of DLC and Re-Ir coating on the form accuracy and surface roughness of molding coer was evaluated.

Re-Ir Coating Effect of WC Core Surface for Aspheric Glass Lens Molding (비구면 Glass 렌즈 성형용 초경합금 코어면 Re-Ir 코팅 효과)

  • Kim, Hyun-Uk;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.441-441
    • /
    • 2007
  • As Rhenium-Iridium{Re-Ir) coating possesses such features as, high hardness, high elasticity, abrasion resistance and chemical stability, there have been exerted continuous efforts in research works in a variety of fields, and this technology has also been applied widely to industrial areas. In this research, the optimal grinding condition was identified using Microlens Process Machine in order to contribute to the development of aspheric glass lens for mobile phone module having 3 mega pixel and 2.5X zoom, and molding core(WC) was manufactured having performed ultra-precision machining. Effects of Re-Ir coating on form accuracy (P-V) of molding core and surface roughness(Ra) were measured and evaluated.

  • PDF

Polymerization of Hydrogel Contact Lens with High Oxygen Transmissibility (산소투과성이 뛰어난 Hydrogel 콘택트렌즈 합성)

  • Sung, A-Young;Kim, Tae-Hun;Kong, Jung-Il
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.1
    • /
    • pp.49-53
    • /
    • 2006
  • Acrylate -PDMS(Polydimethylsiloxane)-Urethane Prepolymer is synthesized through treating diisocynate, HEMA(2-hydroxyethylmethacrylate) and bis(hydroxyalkyl)terminated Poly(dimethylsiloxane) having high oxygen permeability under the DBTDL(Dibutylitin dilaurate) catalyst. Modification of HEMA on bis(hydroxyalkyl)terminated Poly(dimethylsiloxane) is to be able to polymerize with other contact lens materials. And modification of urethane on bis(hydroxyalkyl)terminated Poly(dimethylsiloxane) is to increase elastic property and oxygen transmissibility. This material is analyzed by FT-IR and also will be used to make hydrogel contact lens.

  • PDF

Analysis of IR lens mounting with elastomer (밀봉재를 이용한 적외선 렌즈 마운팅 분석)

  • 김연수;김현숙;최세철;김창우
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.6
    • /
    • pp.460-462
    • /
    • 2001
  • We have analyzed the characteristics of IR lens mounting with elastomer and applied the results to the mounting of a silicon lens with diameter 117 mm which is the objective of a thermal imaging system. The elastomer, the 577 primerless silicone adhesive (Dow Corning Co.) which is heat cure type, and the mount material, A16061 are used for our analysis. Theoretical analysis gives the result that the space between lens and mount is required to be more than 250 ${\mu}{\textrm}{m}$ under the operational temperature conditions of -40~+6$0^{\circ}C$.

  • PDF

Micro-Crack Analysis from Ultra-Precision Diamond Turning of IR Optic Material (적외선 광학 소재의 초정밀 선삭가공시 발생하는 미세균열 연구)

  • Jeong, Byeongjoon;Kim, Geon-Hee;Myung, Tae Sik;Chung, Eui-Sik;Choi, Hwan-Jin;Yeo, In Ju;Jeon, Minwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.905-910
    • /
    • 2016
  • Infrared (IR) optic lens can be fabricated by a single point diamond turning (SPDT) machine without subsequent polishing process. However, this machining process often leaves micro-cracks that deteriorate the surface quality. In this work, we propose an experimental design to remove micro-cracks on IR lens. The proposed design gathered data between cutting process condition and Rt surface roughness. This is of great importance because the scale of micro-cracks is a few micrometer. Rt surface roughness is suitable for analyzing maximum peak height signals of the profile. The experimental results indicate that feed per revolution variable is one of the most dominant variable, affecting the generation micro-cracks on IR lens surfaces.

Material Properties of GeSbSe Chalcogenide Glass and Fabrication Process for 8~12 ㎛ IR Region Aspherical Optical Lens (GeSbSe계 기반 8~12 ㎛ 파장대역 적외선 광학 렌즈 제작 및 비구면 렌즈 가공기술 개발)

  • Bae, Dong-Sik;Yeo, Jong-Bin;Han, Sang-Hyun;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.183-189
    • /
    • 2013
  • The chalcogenide glass has superior optical properties in IR region transmittances. We have determined the composition of GeSbSe chalcogenide glass for the application of good IR lenses, resulting in the composite rate of $Ge_{19}Sb_{23}Se_{58}$. The optical, structural, thermal and physical properties were measured by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Differential scanning calorimeter (DSC), X-ray computed tomography (X-ray CT) respectively. The fabrication of the chalcogenide glass lens for infrared optics applications was proposed using a diamond turning machining technology which is known as the suitable ways for the production cost reduction and the accurate fabrication process control.