• Title/Summary/Keyword: IR accumulated histogram

Search Result 3, Processing Time 0.01 seconds

Sea fog detection near Korea peninsula by using GMS-5 Satellite Data(A case study)

  • Chung, Hyo-Sang;Hwang, Byong-Jun;Kim, Young-Haw;Son, Eun-Ha
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.214-218
    • /
    • 1999
  • The aim of our study is to develop new algorism for sea fog detection by using Geostational Meteorological Satellite-5(GMS-5) and suggest the techniques of its continuous detection. So as to detect daytime sea fog/stratus(00UTC, May 10, 1999), visible accumulated histogram method and surface albedo method are used. The characteristic value during daytime showed A(min) > 20% and DA < 10% when visble accumulated histogram method was applied. And the sea fog region which detected is of similarity in composite image and surface albedo method. In case of nighttime sea fog(18UTC, May 10, 1999), infrared accumulated histogram method and maximum brightness temperature method are used, respectively. Maximum brightness temperature method(T_max method) detected sea fog better than IR accumulated histogram method. In case of T_max method, when infrared value is larger than T_max, fog is detected, where T_max is an unique value, maximum infrared value in each pixel during one month. Then T_max is beneath 700hpa temperature of GDAPS(Global Data Assimilation and Prediction System). Sea fog region which detected by T_max method was similar to the result of National Oceanic and Atmosheric Administration/Advanced Very High Resolution Radiometer (NOAA/AVHRR) DCD(Dual Channel Difference). But inland visibility and relative humidity didn't always agreed well.

  • PDF

Study on sea fog detection near Korea peninsula by using GMS-5 Satellite Data (GMS-5 위성자료를 이용한 한반도 주변 해무탐지 연구)

  • 윤홍주
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.4
    • /
    • pp.875-884
    • /
    • 2000
  • Sea fog/stratus is very difficult to detect because of the characteristics of air-sea interaction and locality ,and the scantiness of the observed data from the oceans such as ships or ocean buoys. The aim of our study develops new algorism for sea fog detection by using Geostational Meteorological Satellite-5(GMS-5) and suggests the technics of its continuous detection. In this study, atmospheric synoptic patterns on sea fog day of May, 1999 are classified; cold air advection type(OOUTC, May 10, 1999) and warm air advection type(OOUTC, May 12, 1999), respectively, and we collected two case days in order to analyze variations of water vapor at Osan observation station during May 9-10, 1999.So as to detect daytime sea fog/stratus(OOUTC, May 10, 1999), composite image, visible accumulated histogram method and surface albedo method are used. The characteristic value during day showed A(min) .20% and DA < 10% when visible accumulated histogram method was applied. And the sea fog region which is detected is similar in composite image analysis and surface albedo method. Inland observation which visibility and relative humidity is beneath 1Km and 80%, respectively, at OOUTC, May 10,1999; Poryoung for visble accumulated histogram method and Poryoung, Mokp'o and Kangnung for surface albedo method. In case of nighttime sea fog(18UTC, May 10, 1999), IR accumulated histogram method and Maximum brightness temperature method are used, respectively. Maxium brightness temperature method dectected sea fog better than IR accumulated histogram method with the charateristic value that is T_max < T_max_trs, and then T_max is beneath 700hPa temperature of GDAPS(Global Data Assimilation and Prediction System). Sea fog region which is detected by Maxium brighness temperature method was similar to the result of National Oceanic and Atmosheric Administratio/Advanced Very High Resolution Radiometer (NOAA/AVHRR) DCD(Dual Channel Difference), but usually visibility and relative humidity are not agreed well in inland.

  • PDF

Development of Dose Planning System for Brachytherapy with High Dose Rate Using Ir-192 Source (고선량률 강내조사선원을 이용한 근접조사선량계획전산화 개발)

  • Choi Tae Jin;Yei Ji Won;Kim Jin Hee;Kim OK;Lee Ho Joon;Han Hyun Soo
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.283-293
    • /
    • 2002
  • Purpose : A PC based brachytherapy planning system was developed to display dose distributions on simulation images by 2D isodose curve including the dose profiles, dose-volume histogram and 30 dose distributions. Materials and Methods : Brachytherapy dose planning software was developed especially for the Ir-192 source, which had been developed by KAERI as a substitute for the Co-60 source. The dose computation was achieved by searching for a pre-computed dose matrix which was tabulated as a function of radial and axial distance from a source. In the computation process, the effects of the tissue scattering correction factor and anisotropic dose distributions were included. The computed dose distributions were displayed in 2D film image including the profile dose, 3D isodose curves with wire frame forms and dosevolume histogram. Results : The brachytherapy dose plan was initiated by obtaining source positions on the principal plane of the source axis. The dose distributions in tissue were computed on a $200\times200\;(mm^2)$ plane on which the source axis was located at the center of the plane. The point doses along the longitudinal axis of the source were $4.5\~9.0\%$ smaller than those on the radial axis of the plane, due to the anisotropy created by the cylindrical shape of the source. When compared to manual calculation, the point doses showed $1\~5\%$ discrepancies from the benchmarking plan. The 2D dose distributions of different planes were matched to the same administered isodose level in order to analyze the shape of the optimized dose level. The accumulated dose-volume histogram, displayed as a function of the percentage volume of administered minimum dose level, was used to guide the volume analysis. Conclusion : This study evaluated the developed computerized dose planning system of brachytherapy. The dose distribution was displayed on the coronal, sagittal and axial planes with the dose histogram. The accumulated DVH and 3D dose distributions provided by the developed system may be useful tools for dose analysis in comparison with orthogonal dose planning.