• Title/Summary/Keyword: IR Machinery

Search Result 49, Processing Time 0.023 seconds

Techniques for Yield Prediction from Corn Aerial Images - A Neural Network Approach -

  • Zhang, Q.;Panigrahi, S.;Panda, S.S.;Borhan, Md.S.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.18-28
    • /
    • 2002
  • Neural network based models were developed and evaluated for predicting corn yield from aerial images based on 1998 and 1994 image data. The model used images in multi-spectral bands such as R, G, B, and IR (Red, Green, Blue and Infrared). The inputs to the neural network consisted of mean and standard deviation of multispectral bands of the aerial images. Performances of several neural network architectures using back-propagation with momentum were compared. The maximum yield prediction accuracy obtained was 97.81%. The BPNN model prediction accuracy could be enhanced by using more number of observations to the model, other data transformation techniques, or by performing optical calibration of the aerial image.

  • PDF

A Possible Sunlight Effect on the Aging Characteristics of Silicone Rubber used for Outdoor Insulation (태양광 모의 열화에 의한 옥외용 실리콘 고무의 열화특성에 관한 연구)

  • Lim, C.R.;Lee, J.H.;Kim, J.T.;Koo, J.Y.;Park, W.K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1276-1278
    • /
    • 1998
  • In this paper, aging characteristics of silicone rubber used for outdoor insulation have been investigated with regards to sunlight effect. For this purpose, silicone rubbers were aged under the artificial sunlight by use of xenon arc lamp(1500W) and various tests were performed such as tracking, breakdown, contact angle, stress, strain. And then, in order to elucidate the changes of material, analysis have been followed as follows; FT-IR, SEM and EDS. Regarding the effect of the sunlight, it was obs that the surface of test samples are severely da with decreased hydrophobicity, tracking resistan breakdown strength.

  • PDF

Detection Method for Bean Cotyledon Locations under Vinyl Mulch Using Multiple Infrared Sensors

  • Lee, Kyou-Seung;Cho, Yong-jin;Lee, Dong-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.263-272
    • /
    • 2016
  • Purpose: Pulse crop damage due to wild birds is a serious problem, to the extent that the rate of damage during the period of time between seeding and the stage of cotyledon reaches 45.4% on average. This study investigated a method of fundamentally blocking birds from eating crops by conducting vinyl mulching after seeding and identifying the growing locations for beans to perform punching. Methods: Infrared (IR) sensors that could measure the temperature without contact were used to recognize the locations of soybean cotyledons below vinyl mulch. To expand the measurable range, 10 IR sensors were arranged in a linear array. A sliding mechanical device was used to reconstruct the two-dimensional spatial variance information of targets. Spatial interpolation was applied to the two-dimensional temperature distribution information measured in real time to improve the resolution of the bean coleoptile locations. The temperature distributions above the vinyl mulch for five species of soybeans over a period of six days from the appearance of the cotyledon stage were analyzed. Results: During the experimental period, cases where bean cotyledons did and did not come into contact with the bottom of the vinyl mulch were both observed, and depended on the degree of growth of the bean cotyledons. Although the locations of bean cotyledons could be estimated through temperature distribution analyses in cases where they came into contact with the bottom of the vinyl mulch, this estimation showed somewhat large errors according to the time that had passed after the cotyledon stage. The detection results were similar for similar types of crops. Thus, this method could be applied to crops with similar growth patterns. According to the results of 360 experiments that were conducted (five species of bean ${\times}$ six days ${\times}$ four speed levels ${\times}$ three repetitions), the location detection performance had an accuracy of 36.9%, and the range of location errors was 0-4.9 cm (RMSE = 3.1 cm). During a period of 3-5 days after the cotyledon stage, the location detection performance had an accuracy of 59% (RMSE = 3.9 cm). Conclusions: In the present study, to fundamentally solve the problem of damage to beans from birds in the early stage after seeding, a working method was proposed in which punching is carried out after seeding, thereby breaking away from the existing method in which seeding is carried out after punching. Methods for the accurate detection of soybean growing locations were studied to allow punching to promote the continuous growth of soybeans that had reached the cotyledon stage. Through experiments using multiple IR sensors and a sliding mechanical device, it was found that the locations of the crop could be partially identified 3-5 days after reaching the cotyledon stage regardless of the kind of pulse crop. It can be concluded that additional studies of robust detection methods considering environmental factors and factors for crop growth are necessary.

Implementation of Agricultural Multi-UAV System with Distributed Swarm Control Algorithm into a Simulator (분산군집제어 알고리즘 기반 농업용 멀티 UAV 시스템의 시뮬레이터 구현)

  • Ju, Chanyoung;Park, Sungjun;Son, Hyoung Il
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.37-38
    • /
    • 2017
  • 최근 방제 및 예찰과 같은 농작업에 단일 UAV(Unmanned Aerial Vehicle)시스템이 적용되고 있지만, 가반하중과 체공시간 등 기존시스템의 문제가 점차 대두되면서 작업 시간을 보다 단축시키고 작업 효율을 극대화 할 수 있는 농업용 멀티 UAV시스템의 필요성이 증대되고 있다. 본 논문에서는 작업자가 다수의 농업용 UAV를 효과적으로 제어할 수 있는 분산군집제어 알고리즘을 제안하며 알고리즘 검증 및 평가를 위한 시뮬레이터를 소개한다. 분산군집제어는 UAV 제어 계층, VP(Virtual Point) 제어 계층, 원격제어 계층으로 이루어진 3계층 제어구조를 가진다. UAV 제어 계층에서 각 UAV는 point mass로 모델링 되는 VP의 이상적인 경로를 추종하도록 제어한다. VP 제어 계층에서 각 VP는 입력 $p_i(t)=u^c_i+u^o_i+u^{co}_i+u^h_i$-(1)을 받아 제어되는데 여기서, $u^c_i{\in}{\mathbb{R}}^3$는 VP 사이의 충돌방지제어, $u^o_i{\in}{\mathbb{R}}^3$는 장애물과의 충돌방지제어, $u^{co}_i{\in}{\mathbb{R}}^3$는 UAV 상호간의 협조제어, $u^h_i{\in}{\mathbb{R}}^3$는 작업자로부터의 원격제어명령이다. (1)의 제어입력에서 충돌방지제어는 각 $u^i_c:=-{\sum\limits_{j{\in}{\eta}_i}}{\frac {{\partial}{\phi}_{ij}^c({\parallel}p_i-p_j{\parallel})^T}{{\partial}p_i}}$-(2), $u^o_c:=-{\sum\limits_{r{\in}O_i}}{\frac {{\partial}{\phi}_{ir}^o({\parallel}p_i-p^o_r{\parallel})^T}{{\partial}p_i}}$-(3)로 정의되면 ${\phi}^c_{ij}$${\phi}^o_{ir}$는 포텐셜 함수를 나타낸다. 원격제어 계층에서 작업자는 햅틱 인터페이스를 통해 VP의 속도를 제어하게 된다. 이때 스케일변수 ${\lambda}$에 대하여 VP의 원격제어명령은 $u^t_i(t)={\lambda}q(t)$로 정의한다. UAV 시뮬레이터는 리눅스 환경에서 ROS(Robot Operating Systems)를 기반한 3차원 시뮬레이터인 Gazebo상에 구축하였으며, 마스터와 슬레이브 간의 제어 명령은 TCPROS를 통해 서로 주고받는다. UAV는 PX4 기반의 3DR Solo 모델을 사용하였으며 MAVROS를 통해 MAVLink 통신 프로토콜에 접속하여 UAV의 고도, 속도 및 가속도 등의 상태정보를 받을 수 있다. 현재 멀티 드론 시스템을 Gazebo 환경에 구축하였으며, 추후 시뮬레이터 상에 분산군집제어 알고리즘을 구현하여 검증 및 평가를 진행하고자 한다.

  • PDF

Analytical Study on Re-solidification Materials(Ammonium Carbonate Intermediates) for NOx Reduction of Exhaust Emissions in Diesel Engine with Solid SCR (디젤엔진 배출가스 질소산화물 저감을 위한 Solid SCR용 Ammonium Carbonate 중간생성물인 재응고 물질의 분석 연구)

  • Shin, Jong Kook;Lee, Hoyeol;Yoon, Cheon Seog;Kim, Hongsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.152-159
    • /
    • 2014
  • Urea solution as a reductant of SCR has been widely used to reduce NOx emissions from diesel engine. But it has lots of problems which are freezing at low temperature due to liquid state, deposition of solid formation in the exhaust, dosing device, and complex package such as mixers for uniform concentration of ammonia. In order to overcome these obstacle, ammonium carbonate which is one of solid ammonium materials to produce ammonia gas directly by sublimation process is considered. Simple reactor with visible widow was designed to predict equilibrium temperature and pressure of ammonium carbonate. To simulate real operation conditions under automobile environment, several cycles of heating and cooling condition were settled, two different re-solidification materials were extracted from the reactor and visible window. Analytical study is performed to characterize these unknown materials by XRD(X-Ray Diffraction), FT-IR(Fourier Transform Infrared Spectroscopy), and EA(Elemental Analyzer). From analytical results, re-solidification materials from heating and cooling cycles are very similar to original material of ammonium carbonate.

A Study on Synthetic Method and Material Analysis of Calcium Ammine Chloride as Ammonia Transport Materials for Solid SCR (Solid SCR용 암모니아 저장물질인 Calcium Ammine Chloride의 합성방법 및 물질분석 연구)

  • Shin, Jong Kook;Yoon, Cheon Seog;Kim, Hongsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.199-207
    • /
    • 2015
  • Solid materials of ammonia sources with SCR have been considered for the application of lean NOx reduction in automobile industry, to overcome complex problems of liquid urea based SCR. These solid materials produce ammonia gas directly with proper heating and can be packaged by compact size, because of high volumetric ammonia density. Among ammonium salts and metal ammine chlorides, calcium ammine chloride was focused on this paper due to low decomposition temperature. In order to make calcium ammine chloride in lab-scale, simple reactor and glove box was designed and built with ammonium gas tank, regulator, and sensors. Basic test conditions of charging ammonia gas to anhydrous calcium chloride are chosen from equilibrium vapor pressure by Van't Hoff plot based on thermodynamic properties of materials. Synthetic method of calcium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%) from simple weight calculations which were confirmed by IC. Also, lab-made calcium ammine chloride were analyzed by TGA and DSC to clarify decomposition step in the equations of chemical reaction. To understand material characteristics for lab-made calcium ammine chloride, DA, XRD and FT-IR analysis were performed with published data of literature. From analytical results, water content in lab-made calcium ammine chloride can be discovered and new test procedures of water removal were proposed.

Research of Phase Correlation Method for Identifying Quantitative Similarity in Adjacent Real-time Streaming Frame

  • Cho, Yongjin;Yun, Yeji;Lee, Kyou-seung;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.157-157
    • /
    • 2017
  • To minimize the damage by wild birds and acquire the benefits such as protection against weeds and maintenance of water content in soil, the mulching black color vinyl after seeding should be carried out. Non-contact and non-destructive methods that can continuously determine the locations are necessary. In this study, a crop position detection method was studied that uses infrared thermal image sensor to determine the cotyledon position under vinyl mulch. The moving system for acquiring image arrays has been developed for continuously detecting crop locations under plastic mulching on the field. A sliding mechanical device was developed to move the sensor, which were arranged in the form of a linear array, perpendicular to the array using a micro-controller integrated with a stepping motor. The experiments were conducted while moving 4.00 cm/s speed of the IR sensor by the rotational speed of the stepping motor based on a digital pulse width modulation signal from the micro-controller. The acquired images were calibrated with the spatial image correlation. The collected data were processed using moving averaging on interpolation to determine the frame where the variance was the smallest in resolution units of 1.02 cm. Non-linear integral interpolation was one of method for analyzing the frequency using the normalization image and then arbitrarily increasing the limited data value of $16{\times}4pixels$ in one frame. It was a method to relatively reduce the size of overlapping pixels by arbitrarily increasing the limited data value. The splitted frames into 0.1 units instead of 1 pixel can propose more than 10 times more accurate and original method than the existing correction method. The non-integral calibration method was conducted by applying the subdivision method to the pixels to find the optimal correction resolution based on the first reversed frequency. In order to find a correct resolution, the expected location of the first crop was indicated on near pixel 4 in the inversion frequency. For the most optimized resolution, the pixel was divided by 0.4 pixel instead of one pixel to find out where the lowest frequency exists.

  • PDF

A Study on the Correlation between Temperature and CMP Characteristics (CMP특성과 온도의 상호관계에 관한 연구)

  • Gwon, Dae-Hui;Kim, Hyeong-Jae;Jeong, Hae-Do;Lee, Eung-Suk;Sin, Yeong-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.156-162
    • /
    • 2002
  • There are many factors affecting the results of CMP (Chemical Mechanical Polishing). Among them, the temperature is related to the removal rate and WIWNU (Within Wafer Non-Uniformity). In other words, the removal rate is proportional to the temperature and the variation of temperature distribution on a pad affects the non-uniformity within a wafer. In the former case, the active chemistry improves the rate of chemical reaction and the removal rate becomes better. But, there are not many advanced studies. In the latter case, a kinematical analysis between work-piece and pad can be obtained. And such result analysed from the mechanical aspect can be directly related to the temperature distribution on a pad affecting WIWNU. Meanwhile, the temperature change affects the quantities of both slurry and pad. The change of a pH value of the slurry chemistry due to a temperature variation affects the surface state of an abrasive particle and hence the agglomeration of abrasives happens above the certain temperature. And the pH alteration also affects the zeta potential of a pad surface and therefore the electrical force between pad and abrasive changes. Such results could affect the removal rate and etc. Moreover, the temperature changes the 1st and 2nd elastic moduli of a pad which are closely related to the removal rate and the WIWNU.

Chemical Effects to Cement Concrete by Grease Oxidation (그리이스의 산화가 시멘트 콘크리트에 미치는 화학적 영향)

  • 정근우;조원오;김영운;임수진;이은아;김성욱
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.99-105
    • /
    • 2000
  • Greases composed of base oil and thickener are widely used in the purpose of lubrication and anti-corrosion of machinery. However, greases are sometimes oxidized and decomposed by heat of friction, and produced organic acid. And the greases leaked out ordinary spot make the concrete structures weaken. In this study, the chemical effects of the greases with the concrete structures were investigated through oxidation reaction under pressure and oxygen, and evaluated by the analysis of TAN, Ca content, FT-IR and XRD of grease and cement powder after the oxidation reaction. As the results, TAN value decreased with the increase of the content of cement because of neutralization of organic acid produced by the oxidation of grease with calcium contained in the cement. The content of calcium linearly increased with the increase of cement due to calcium salt by neutralization of acid. Also, according to XRD results of the cement powder oxidized at 99 $^{\circ}C$, the diffraction peak due to calcium hydroxide decreased in comparison with that at room temperature because of the reaction of calcium and organic acid.

  • PDF

Development of Low Power Driven Inner Tap Inspection System capable of Wireless Communication with Video Equipment (영상기기와 무선통신이 가능한 저전력 구동의 이너탭 검사시스템 개발)

  • Ahn, Sung-Su
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.6
    • /
    • pp.649-658
    • /
    • 2018
  • In this paper, we propose a mechanical contact inner tap inspection system that can inspect the defect of the inner tap immediately after inner tap is processed within the machining center. The inspection module has the collet chuck structure, so it can mounted on the main spindle of the machining center during inspection. It was developed with a focus on inspection for tap having 20 mm depth which is primarily fabricated in automotive parts and has a double sided PCB-type control system including sensing function based on Zigbee module, micom and IR sensor for wireless transmission of measured data with low power operation, and also a battery for supplying electric power. The current consumption is 46.8mA in the inspection operation mode and 0.0268mA in the power saving mode for 3.7V of the applied power source, so that 30,000 times or more inspection can be performed with assumed 5 seconds inspection time for one tap. Experiments in test jig system and actual machining center confirm that the proposed inner tap inspection system can be applied to the batch process of simultaneous inspection after tapping in the machining center.