• Title/Summary/Keyword: IR Light

Search Result 557, Processing Time 0.025 seconds

High Efficiency Red Phosphorescent Organic Light Emitting Devices Using the Double Dopant System (이중 도핑을 이용한 고효율 적색 인광 유기발광소자)

  • Jang, J.G.;Shin, H.K.;Kim, W.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.351-352
    • /
    • 2008
  • A new high efficient red PhOLED using a host of $Bebq_2$ and double dopants of $(pq)_2$Ir(acac) and SEC-R411 have been fabricated and evaluated. The device doubly doped with $(pq)_2$Ir(acac) and SFC-R411 showed the current efficiency improvement of 22% under a luminance of 10000 cd/$m^2$ in comparision with the device singly doped with SFC-R411. The luminance, current efficiency and central wavelength of the doubly doped device were 9300 cd/$m^2$ at 7V, 11.1 cd/A under a luminance of 10000 cd/$m^2$ and 625 nm, respectively.

  • PDF

Preparation and Physical Properties of Red-photoluminescent Graphene/Europium(III)/Picolinate

  • Kim, Jang-Yong;Lee, Jin-Bong;Kim, Hye-Jin;Shin, Koo;Yu, Yun-Sik;Oh, Yung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1485-1488
    • /
    • 2010
  • Novel photoluminescent graphene, graphene/europium/picolinate, was made from the reaction of the graphene carboxylate, europium(III) and $\alpha$-pyridoin anion in methanol solution. There was evidence on IR spectroscopic data that europium metal was coordinated by graphene carboxylate. The graphene/europium/picolinate materials emitted the red luminescence with main peaks at 609 and 695 nm, when solid sample was excited by an UV light at the wavelength of 254 nm. The surface morphology and physical properties of the graphene/europium/picolinate product have been investigated by IR, PL, SEM, TEM and TGA measurements.

Classification of Surface Defects on Steel Strip by KNN Classifier (KNN 분류기에 의한 강판 표면 결함의 분류)

  • Kim C.H.;Choi S.H.;Joo W.J.;Kim K.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.379-383
    • /
    • 2005
  • This paper proposes a new steel strip surface inspection system. The system acquires bright and dark field images of defects by using a stroboscopic IR LED light and area camera system and the defect images are preprocessed and segmented in real time for feature extraction. 4113 defect samples of cold roll steel strips are used to develop KNN (k-Nearest Neighbor) classifier which classifies the defects into 8 different types. The developed KNN classifier demonstrates about 85% classifying performance which is considered very plausible result.

  • PDF

Effects of Oxygen on the Photochemical Behaviors of Methacrylic Homopolymer Containing Anthracene Groups

  • Kim, Yong-Woon;Chae, Kyu-Ho
    • Journal of Photoscience
    • /
    • v.9 no.3
    • /
    • pp.57-63
    • /
    • 2002
  • A homopolymer containing anthracene groups, poly[6-(9-anthryloxy)hexyl methacrylate] (PAn) was prepared and the effect of oxygen on its photochemical reaction was studied by UV and IR absorption spectroscopy in order to understand its photochemical behavior. Photochemical reaction of the PAn in THF solution under an atmosphere of air resulted in the formation of endoperoxide at the beginning stage of reaction followed by photodimerization reaction after all the oxygen was consumed, whereas photodimerization and endoperoxide formation took place concomitantly in the film state. The photoreversible reaction of the anthracene photodimer groups in the polymer by photolysis with 254 nm UV light was not efficient. The IR absorption spectral changes of the PAn film upon irradiation indicate that various photooxidation products were produced in the atmosphere of air.

  • PDF

Optical Stimulation and Pacing of the Embryonic Chicken Heart via Thulium Laser Irradiation

  • Chung, Hong;Chung, Euiheon
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Optical stimulation provides a promising alternative to electrical stimulation to selectively modulate tissue. However, developing noninvasive techniques to directly stimulate excitable tissue without introducing genetic modifications and minimizing cellular stress remains an ongoing challenge. Infrared (IR) light has been used to achieve optical pacing for electrophysiological studies in embryonic quail and mammalian hearts. Here, we demonstrate optical stimulation and pacing of the embryonic chicken heart using a pulsed infrared thulium laser with a wavelength of 1927 nm. By recording stereomicroscope outputs and quantifying heart rates and movements through video processing, we found that heart rate increases instantly following irradiation with a large spot size and high radiant exposure. Targeting the atrium using a smaller spot size and lower radiant exposure achieved pacing, as the heart rate synchronized with the laser to 2 Hz. This study demonstrates the viability of using the 1927 nm thulium laser for cardiac stimulation and optical pacing, expanding the optical parameters and IR lasers that can be used to modulate cardiac dynamics.

Detection of Oxygen Species Generated from Ag2Se-Graphene Heterojunction Photocatalysts with Excellent Visible Light Driven Photocatalytic Performance

  • Meng, Ze-Da;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.27 no.5
    • /
    • pp.255-262
    • /
    • 2017
  • Reactive oxygen species (ROS) can be produced by interactions between sunlight and light-absorbing substances in natural water environments and can completely destroy various organic pollutants in waste water. In this study, we used graphene oxide modified $Ag_2Se$ nanoparticles to enhance photochemically generated oxygen (PGO) species activity. Surface area and pore volumes of the $Ag_2Se-graphene$ ($Ag_2Se-G$) samples showed catastrophic decrease due to deposition of $Ag_2Se$. The generation of reactive oxygen species was detected through the oxidation reaction of DPCI to DPCO. The photocurrent density and the PGO effect increase in the case of the use of modified graphene. The PGO effect of the graphene modified with $Ag_2Se$ composites increased significantly due to a synergetic effect between graphene and the $Ag_2Se$ nanoparticles. The photocatalytic activity of sample was evaluated by measuring the degradation of organic pollutants such as methylene blue (MB) and industrial dyes such as Texbrite BA-L (TBA) under visible light.

White Light Emission from a Colloidal Mixture Containing ZnS Based Nanocrystals: ZnS, ZnS:Cu and ZnS:Mn

  • Lee, Jae Woog;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.189-196
    • /
    • 2014
  • Water dispersible ZnS based nanocrystals: ZnS (blue), ZnS:Cu (green) and ZnS:Mn (yellow-orange) were synthesized by capping the surface of the nanocrystals with a mercaptopropionic acid (MPA) molecule. The MPA capped ZnS based nanocrystal powders were characterized by using XRD, HR-TEM, EDXS, FT-IR, and FT-Raman spectroscopy. The optical properties of the colloidal nanocrystals were also measured by UV/Vis and photoluminescence (PL) spectroscopies in aqueous solvents. The PL spectra showed broad emission peaks at 440 nm (ZnS), 510 nm (ZnS:Cu) and 600 nm (ZnS:Mn), with relative PL efficiencies in the range of 4.38% to 7.20% compared to a reference organic dye. The measured average particle sizes from the HR-TEM images were in the range of 4.5 to 5.0 nm. White light emission was obtained by mixing these three nanocrystals at a molar ratio of 20 (ZnS):1 (ZnS:Cu):2 (ZnS:Mn) in water. The measured color coordinate of the white light was (0.31, 0.34) in the CIE chromaticity diagram, and the color temperature was 5527 K.

Preparation of SiO2-Coated TiO2 Composite Materials with Enhanced Photocatalytic Activity Under UV Light

  • Hu, Shaozheng;Li, Fayun;Fan, Zhiping
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1895-1899
    • /
    • 2012
  • $SiO_2$-coated $TiO_2$ composite materials with enhanced photocatalytic activity under UV light was prepared by a simple catalytic hydrolysis method. XRD, TEM, UV-vis spectroscopy, Photoluminescence, FT-IR and XP spectra were used to characterize the prepared samples. The obvious shell-core structure was shown for obtained $SiO_2$@$TiO_2$ sample. The average thickness of the $SiO_2$ coating layer was 2-3 nm. The interaction between $SiO_2$ and $TiO_2$ restrained the recombination of excited electrons and holes. The photocatalytic activities were tested in the degradation of an aqueous solution of a reactive dyestuff, methylene blue, under UV light. The photocatalytic activity of $SiO_2$@$TiO_2$ was much higher than that of P25 and mechanical mixing sample $SiO_2/TiO_2$. The possible mechanism for the photocatalysis was proposed.

MODELING OF THE ZODIACAL LIGHT FOR THE AKARI MID-IR ALL-SKY DIFFUSE MAPS

  • Kondo, Toru;Ishihara, Daisuke;Kaneda, Hidehiro;Oyabu, Shinki;Amatsutsu, Tomoya;Nakamichi, Keichiro;Sano, Hidetoshi;Ootsubo, Takafumi;Onaka, Takashi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.59-61
    • /
    • 2017
  • The AKARI 9 and 18 µm diffuse maps reveal the all-sky distribution of the interstellar medium with relatively high spatial resolution of ~6". The zodiacal light is a dominant foreground component in the mid-infrared. Thus, removal of the zodiacal light is a critical issue to study low surface brightness Galactic diffuse emission. We carried out modeling of the zodiacal light based on the Kelsall model which is constructed from the COBE data. In the previous study, only a time-varying component of the zodiacal light brightness was used for determination of the model parameters. However, there remains a residual component of the zodiacal light around the ecliptic plane even after removal with the model. Therefore, instead of using a time-varying component, we use the absolute brightness of the zodiacal light and we find that the new model can better remove the residual component. As a result, the best-fit model parameters are changed from those in the previous study. We discuss the properties of the zodiacal light based on our new result.

Performance Analysis of Wireless Communication Interface System Module Combined LED Light Device (LED조명 디바이스를 접목한 무선통신 인터페이스 시스템 모듈 성능 분석)

  • Jang, Tae-Soo;Lee, Jun-Myung;Park, Keon-Jun;Kim, Yong-Kab
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2431-2436
    • /
    • 2012
  • This paper is implemented simple visible light communication system by combining the communications through LED lighting. It uses a variable PD sensor to the receiver and 1~12 the LED light-emitting device to the transmitter to realize LED visible light communication. Initial distance value of the developed transmission and receiver is more than 0~1.5m for LED visible light communication, the overall system transmission rate is organized with thousands kbps variability visible light media transmission system. It was measured the performance experiment during lens wearing or not wearing in order to increase the overall efficiency of the LED module, configures the LED and PD to existing PC module for the performance analysis of the implemented research, experiments the maximum communication distance of the transmitter/receiver according to LED count and the transmission rate, check about application methods and the possibility.