• Title/Summary/Keyword: IR Guided Missile

Search Result 12, Processing Time 0.016 seconds

Synthetic Infra-Red Image Dataset Generation by CycleGAN based on SSIM Loss Function (SSIM 목적 함수와 CycleGAN을 이용한 적외선 이미지 데이터셋 생성 기법 연구)

  • Lee, Sky;Leeghim, Henzeh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.476-486
    • /
    • 2022
  • Synthetic dynamic infrared image generation from the given virtual environment is being the primary goal to simulate the output of the infra-red(IR) camera installed on a vehicle to evaluate the control algorithm for various search & reconnaissance missions. Due to the difficulty to obtain actual IR data in complex environments, Artificial intelligence(AI) has been used recently in the field of image data generation. In this paper, CycleGAN technique is applied to obtain a more realistic synthetic IR image. We added the Structural Similarity Index Measure(SSIM) loss function to the L1 loss function to generate a more realistic synthetic IR image when the CycleGAN image is generated. From the simulation, it is applicable to the guided-missile flight simulation tests by using the synthetic infrared image generated by the proposed technique.

Investigation of the Effects of UAV Nozzle Configurations on Aircraft Lock-on Range (무인항공기의 노즐 형상 변화가 Lock-on Range에 미치는 영향에 관한 연구)

  • Kim, Min-Jun;Kang, Dong-Woo;Myong, Rho-Shin;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.204-212
    • /
    • 2015
  • The infrared lock-on range of target aircraft plays a critical role in determining the aircraft survivability. In this investigation, the effects of various UAV engine nozzle configurations on the aircraft lock-on range were theoretically analyzed. A virtual subsonic aircraft was proposed first, based on the mission requirement and the engine performance analysis, and convergent-type nozzles were then designed. After determining thermal flow field and nozzle surface temperature distribution with the CFD code, an additional analysis was conducted to predict the IR signature. Also, atmospheric transmissivity for various latitude and seasons was calculated, using the LOWTRAN code. Finally, the lock-on and lethal envelopes were calculated for different nozzle configurations, assuming the sensor threshold of the given IR guided missile. It was shown that the maximum 55.3% reduction in lock-on range is possible for deformed nozzles with the high aspect ratio.