• Title/Summary/Keyword: IR (Infra-Red) sensor

Search Result 20, Processing Time 0.024 seconds

A Study on the Seam tracking and Control of the Welding Quality Using a Infrared sensor (적외선 센서를 이용한 용접선 추적 및 용접품질 모니터링에 관한 연구)

  • Kim I.S.;Son J.S.;Kim H.H.;Seo J.H.;Kim I.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.301-302
    • /
    • 2006
  • In this paper, the possibilities of the Infra-red sensor in sensing and control of the bead geometry in the automated welding process are presented. Infra-red sensor is a well-known method to deal with the problems with a high degree of fuzziness so that the sensor is employed to build the relationship between process variables and the quality characteristic the proposed above respectively. Based on several neural networks, the mathematical models are derived from extensive experiments with different welding parameters and complex geometrical features. The developed system enables to select the optimal welding parameters and control the desired weld dimensions during arc welding process.

  • PDF

A Dust Detection Sensor System for Improvement of a Robot Vacuum Cleaner (청소 로봇 성능 향상을 위한 먼지 검출 시스템)

  • Kim, Dong-Hoe;Min, Byung-Cheol;Kim, Donghan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.896-900
    • /
    • 2013
  • In this paper, we develop a dust detection sensor system capable of identifying types of dust for an improvement of a robot vacuum cleaner. The dust detection sensor system is composed of a set of infra-red sensors: a single transmitter and multiple receivers. Given the fixed amount of light transmitted from the transmitter, the amount of light coming in multiple receiver sensors varies, depending on the type and density of dust that is passing between the transmitter and the receivers. Therefore, the type of dust can be identified by means of observing the change of the amount of light from the receiver sensors. For experiments, we use two types of dust, rice and sesame, and validate the effectiveness of the proposed method.

UV/IR flame detector using Microprocessor (마이크로프로세서를 사용한 UV/IR 불곶 감지기)

  • 박성진;임병현;임종연;김명원;윤길호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.215-218
    • /
    • 2001
  • A flame detector responds either to radiant energy visible to the human eye or outside the range of human vision. Such a detector is sensitive to glowing embers, coals, or flames which radiate energy of sufficient intensity and spectral quality to actuate the alarm. An infra-red detectors can respond to the total IR component of the flame alone or in combination with flame flicker in the frequency range of 5 to 30 Hz. A major problem in the use of infrared detectors receiving total IR radiation is the possible interference of solar radiation in the infrared region. When detectors are located in places shielded from the sun, such as vaults. filtering or shielding the unit from the sun's rays is unnecessary. In this study, we proposed method for redue a false alarm with using filtering & sensor technology for distinguish of causes of raise a false alarm and pure flame.

  • PDF

A Study on the Best Applicationsof Infra-Red(IR) Sensors Mounted on the Unmanned Aerial Vehicles(UAV) in Agricultural Crops Field (무인기 탑재 열화상(IR) 센서의 농작물 대상 최적 활용 방안 연구)

  • Ho-Woong Shon;Tae-Hoon Kim;Hee-Woo Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1073-1082
    • /
    • 2023
  • Thermal sensors, also called thermal infrared wavelength sensors, measure temperature based on the intensity of infrared signals that reach the sensor. The infrared signals recognized by the sensor include infrared wavelength(0.7~3.0㎛) and radiant infrared wavelength(3.0~100㎛). Infrared(IR) wavelengths are divided into five bands: near infrared(NIR), shortwave infrared(SWIR), midwave infrared(MWIR), longwave infrared(LWIR), and far infrared(FIR). Most thermal sensors use the LWIR to capture images. Thermal sensors measure the temperature of the target in a non-contact manner, and the data can be affected by the sensor's viewing angle between the target and the sensor, the amount of atmospheric water vapor (humidity), air temperature, and ground conditions. In this study, the characteristics of three thermal imaging sensor models that are widely used for observation using unmanned aerial vehicles were evaluated, and the optimal application field was determined.

A Study of Image Target Detection and Tracking for Robust Tracking in an Occluded Environment (표적의 부분가림이 존재하는 환경에서 견실한 추적을 위한 영상 표적 탐지, 추적 알고리듬 연구)

  • Kim, Yong;Song, Taek-Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.982-990
    • /
    • 2010
  • In a target tracking system using image information from a CCD (Charged Couple Device) or an IIR (Imaging Infra-red) sensor, occluded targets can result in track losses. If the target is occlued by background objects such as buildings or trees, probability of track existence will be reduced sharply and track will be terminated due to track maintenance algorithms. This paper proposes data association algorithm based on target existence for the robust tracking performance. we suggest the HPDA (Highest Probability Data Association) algorithm based on target existence and the tracking performance is compared with the established method based on target perceivability. Image tracking simulation that utilizes virtual 3D images and real IR images is employed to evaluate the robustness of the proposed tracking algorithm.

VTG based Moving Target Tracking Performance Improvement Method using MITL System in a Maritime Environment (해상환경에서 MITL 시스템을 활용한 VTG 기반 기동표적 추적성능 개선 기법)

  • Baek, Inhye;Woo, S.H. Arman
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.3
    • /
    • pp.357-365
    • /
    • 2019
  • In this paper, we suggest the tracking method of moving multi-objects in maritime environments. The image acquisition is conducted using IR(InfraRed) camera sensors on an airborne platform. Under the circumstance of maritime, the qualities of IR images can be significantly degraded due to the clutter influence, which directly gives rise to a tracking loss problem. In order to reduce the effects from the clutters, we introduce a technical approach under Man-In-The-Loop(MITL) system for enhancing the tracking performance. To demonstrate the robustness of the proposed approach based on VTG(Valid Tracking Gate), the simulations are conducted utilizing the airborne IR video sequences: Then, the tracking performances are compared with the existing Kalman Filter tracking techniques.

Black Body Design and Verification for Non-Uniformity Correction of Imaging Sensor and Uncertainty Analysis (영상센서의 비균일 응답특성 보정을 위한 흑체 설계 및 성능검증과 보정오차 분석)

  • Shin, Somin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.240-245
    • /
    • 2013
  • Each pixel of InfraRed(IR) sensor differently responds to IR light as time elapses or the sensor on/off operation is repeated. As a result, the quality of IR sensor image is deteriorated, and therefore NUC(Non-uniformity Correction) is periodically needed for IR sensor. In this paper, in order to perform NUC in the Satellite, on-board V-grooved blackbody is designed with a baffle so that the emissivity of black body is to be higher than 0.995 as well as the temperature deviation is less than $1^{\circ}C$ in the range of the infrared wave length from 3.3 to $5.2{\mu}m$. To check its performance, the emissivity and the surface temperature of the blackbody by TRT(Transfer Reference Thermometer) and IR Micrometer scanner are measured, respectively. From the results, black body design is verified and the uncertainty of NUC is estimated through the measurement results.

A Study on the Control of the Welding Quality Using a Infrared sensor (적외선센서를 이용한 용접품질 제어에 관한 연구)

  • Kim I.S.;Son S.J.;Kim I.J.;Kim H.H.;Seo J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.754-758
    • /
    • 2005
  • Optimization of process variables such as arc current, welding voltage and welding speed in terms of the weld characteristics desired is the key step in achieving high quality and improving performance characteristics without increasing the cost. Consequently, incorrect settings of those process variables give rise to deviations in the welding characteristics from the desired bead geometry. Therefore, trainee welders are referred to the tabulated information relating different metal types and thickness as to recommend the desired values of process variables. Basically, the bead geometry plays an important role in determining the mechanical properties of the weld. So that it is very important to select the process variables for obtaining optimal bead geometry. However, it is difficult for the traditional identification methods to provide an accurate model because the optimized welding process is non-linear and time-dependent. In this paper, the possibilities of the Infra-red sensor in sensing and control of the bead geometry in the automated welding process are presented. Infra-red sensor is a well-known method to deal with the problems with a high degree of fuzziness so that the sensor is employed to build the relationship between process variables and the quality characteristic the proposed above respectively. Based on several neural networks, the mathematical models are derived from extensive experiments with different welding parameters and complex geometrical features. The developed system enables to select the optimal welding parameters and control the desired weld dimensions during arc welding process.

  • PDF

Inspection of the spot welding using IR sensor (적외선 감지 센서를 이용한 점 용접부의 검사)

  • Lim, Dae-Cheol;Park, In-Tae;Kang, Hyoung-Shik;Gweon, Dae-Gab
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.132-140
    • /
    • 1999
  • This paper suggests a monitoring method for the pulsed laser spot welding of the thin metal sheets using a point IR(InfraRed) sensor. A new criterion was introduced and the experimental results guaranteed the efficiency. The ideal radiation feature was derived from the mathematical model and was simulated. The radiation feature is robust to withstand the change of measuring condition and can be used to detect the absorbed laser energy. In an experiment, the radiation feature was examined for the differect laser energy. The pulse width and the laser power was variated and the radiation feature was examined. In the other experiment, the relationship between the weld strength and radiation feature was examined. Artificial Neural Network(ANN) was employed to find out the relationship. The correlation coefficient between the real strength and the estimated strength is high as 0.94 and the mean square error is low as 0.64 kgf learned parts. Another group of the welds was used to appraise the learning efficiency. The correlation coefficient between the measured and the estimated weld strength is high as 0.91.

  • PDF

Design of Interactive Teleprompter (인터렉티브 텔레프롬프터의 설계)

  • Park, Yuni;Park, Taejung
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.3
    • /
    • pp.43-51
    • /
    • 2016
  • This paper presents the concept of "interactive teleprompter", which provides the user with interaction with oneself or other users for live television broadcasts or smart mirrors. In such interactive applications, eye contacts between the user and the regenerated image or between the user and other persons are important in handling psychological processes or non-verbal communications. Unfortunately, it is not straightforward to address the eye contact issues with conventional combination of normal display and video camera. To address this problem, we propose an "interactive" teleprompter enhanced from conventional teleprompter devices. Our interactive teleprompter can recognize the user's gestures by applying infra-red (IR) depth sensor. This paper also presents test results for a beam splitter which plays a critical role for teleprompter and is designed to handle both visual light for RGB camera and IR for Depth sensor effectively.