• Title/Summary/Keyword: IR(infrared) image

Search Result 152, Processing Time 0.015 seconds

Verification of GEO-KOMPSAT-2A AMI Radiometric Calibration Parameters Using an Evaluation Tool (분석툴을 이용한 천리안2A 기상탑재체 복사 보정 파라미터 검증)

  • Jin, Kyoungwook;Park, Jin-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1323-1337
    • /
    • 2020
  • GEO-KOMPSAT-2A AMI (Advanced Meteorological Imager) radiometric calibration evaluation is an essential element not only for functional and performance verification of the payload but for the quality of the sensor data. AMI instrument consists of six reflective channels and ten thermal infrared ones. One of the key parameters representing radiometric properties of the sensor is a SNR (Signal-to-Noise Ratio) for the reflective channels and a NEdT (Noise Equivalent delta Temperature) for the IR ones respectively. Other important radiometric calibration parameters are a dynamic range and a gain value related with the responsivity of detectors. To verify major radiometric calibration performance of AMI, an offline radiometric evaluation tool was developed separately with a real-time AMI data processing system. Using the evaluation tool, validation activities were carried out during the GEO-KOMPSAT-2A In-Orbit Test period. The results from the evaluation tool were cross checked with those of the HARRIS, which is the AMI payload vendor. AMI radiometric evaluation activities were conducted through three phases for both sides (Side 1 and Side 2) of AMI payload. Results showed that performances of the key radiometric properties were outstanding with respect to the radiometric requirements of the payload. The effectiveness of the evaluation tool was verified as well.

True Orthoimage Generation from LiDAR Intensity Using Deep Learning (딥러닝에 의한 라이다 반사강도로부터 엄밀정사영상 생성)

  • Shin, Young Ha;Hyung, Sung Woong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.363-373
    • /
    • 2020
  • During last decades numerous studies generating orthoimage have been carried out. Traditional methods require exterior orientation parameters of aerial images and precise 3D object modeling data and DTM (Digital Terrain Model) to detect and recover occlusion areas. Furthermore, it is challenging task to automate the complicated process. In this paper, we proposed a new concept of true orthoimage generation using DL (Deep Learning). DL is rapidly used in wide range of fields. In particular, GAN (Generative Adversarial Network) is one of the DL models for various tasks in imaging processing and computer vision. The generator tries to produce results similar to the real images, while discriminator judges fake and real images until the results are satisfied. Such mutually adversarial mechanism improves quality of the results. Experiments were performed using GAN-based Pix2Pix model by utilizing IR (Infrared) orthoimages, intensity from LiDAR data provided by the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF) through the ISPRS (International Society for Photogrammetry and Remote Sensing). Two approaches were implemented: (1) One-step training with intensity data and high resolution orthoimages, (2) Recursive training with intensity data and color-coded low resolution intensity images for progressive enhancement of the results. Two methods provided similar quality based on FID (Fréchet Inception Distance) measures. However, if quality of the input data is close to the target image, better results could be obtained by increasing epoch. This paper is an early experimental study for feasibility of DL-based true orthoimage generation and further improvement would be necessary.