• Title/Summary/Keyword: IR(Impulse Radio)

Search Result 81, Processing Time 0.019 seconds

A Robust Coherent IR-UWB Channel Estimation Method Against Imperfect Synchronization (동기식 IR-UWB 시스템에서 불완전 동기 환경에 강인한 채널 추정 기법)

  • Hwang, In-Jae;Kim, Jeong-Been;Oh, Wang-Rok;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3A
    • /
    • pp.205-212
    • /
    • 2009
  • A novel channel estimation scheme is proposed for coherent Impulse Radio Ultra Wideband (IR-UWB) system based on IEEE 802.15.4a specification. By extracting and utilizing the information on the frequency synchronization, the proposed channel estimation algorithm improves the receiver performance even under the restricted number of preamble symbols in IEEE 802.15.4a signal format. Simulation results over the IEEE 802.15.4a channel models show the performance gain with the proposed algorithm compared to ordinary channel estimation method.

Digital Fine Timing Tracker for Correlation Detection Receiver in IR-UWB Communication System (IR-UWB 시스템에서 상관 검출 수신기를 위한 디지털 미세 타이밍 추적기)

  • Ko Seok-Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9C
    • /
    • pp.905-913
    • /
    • 2006
  • In the impulse radio ultra-wideband communication systems, the residual timing offset exists when the acquisition and tracking of the timing synchronization is well done. And the offset affects the performance of the system dramatically. In order to compensate the offset, we present the digital phase-locked loop that uses the reference signal in the correlation detection receiver. First, we show the degradation of BER performance that is caused by the offset, and then compensation process of the timing tracker and performance improvement. In this paper, the timing detector in the tracker operates at the sampling period of frame level uses the correlation between received and reference signal. Also, we present the performance comparison by using the computer simulation results for different Gaussian monocycle pulses.

Design of UWB Tapered Slot Antenna for the Optimum Impulse Radio Transmitting & Receiving (최적 임펄스 전송을 위한 초광대역 테이퍼 슬롯 안테나 설계)

  • Koh, Young-Mok;Ra, Keuk-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.553-563
    • /
    • 2010
  • This paper presents a tapered slot-antenna(TSA) for optimal impulse-signal transmission in ultra-wide band(UWB). The proposed TSA provides radiates in end-fire direction, which meets an impulse-radio UWB(IR-UWB) system demands(e.g., low loss, thus less error throughout the UWB band). In order to minimize the pulse distortion, we used an wideband impedance transformer and a microstrip slotline. The pulse fidelity characteristics was evaluated with finite-difference time-domain(FDTD) analysis technique and pulse fidelity correlation equation. Approximately 93.89 % pulse fidelity was obtained between the two antennas in 0.5 m range. Additionally, derived chirp Z-transform algorithm enables us to utilize the zoom-in option on the pulse signal in few nano-seconds below. Thus, it is possible to analyze the pulse signal distortion, delay or dispersion characteristics.

Performance of Ultra Wideband M-ary Pulse Position Modulated Impulse Radio Systems (초광대역 시간 M 진 펄스 위치 변조 임펄스 무선 전송 시스템의 성능)

  • 안진철;박광희;신요안
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.11A
    • /
    • pp.1682-1690
    • /
    • 2000
  • 최근들어 초광대역 시간 도약 임펄스 무선 전송(ultra wideband time hopping impulse radio; 이하 IR) 기술이 실내 무선 LAN이나 군용 무선 통신 시스템 등을위한 새로운대역 확산 전송 방식으로서 큰 관심을 모으고 있다 IR 시스템은 1(nsec) 이하의 매우 짧은 펄스폭의 펄스 위치 변조(pulse position modulation)된 가우시안 모노사이클 펄스열을 이용함으로서 매우작은 크기 의수 GHz에 이르는 초광대역 스펙트럼을 가지며 기존의 통신 시스템에 거의 간섭을 미치지 않으면서 사용 가능하다. 본 논문에서는 IR 시스템에 M진 (M-ary) PPM 방식을 적용하는 경우의 성능을 평가하였다. 특시 의사 잡음 부호 발생기와 10진 변환기(decimator)로 구성된 시간 도약 패턴을 사용하여 다원 접속 간섭이 배제되는 부가성 백색 가우시안 잡음 채널 하의 동기식(synchronous) IR 시스템에서, 심벌 수, M, 가우시안 모노사이클 펄스 폭 $\tau$$_{p}$, PPM에서 펄스 간 간격$\delta$, 펄스 반복 횟수 N$_{s}$ 등과 같은 다양한 시스템 파라미터의 조합에 따른 성능 변화를 모의 실험을 통해 확인하였으며, 이러한 결과를 통해 비트 오율, 시스템 복잡도 및 전송율 등의 사양에 따라 적합한 M 진 PPM IR 시스템의 구성 방안에 대한 근거를 제공하였다.

  • PDF

An overview of channel estimation for IR-UWB System (IR-UWB 시스템을 위한 채널 추정 기법)

  • Shin, Chang-Taek;Choi, Gin-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.1-10
    • /
    • 2010
  • Impulse Radio Ultra-wideband (IR-UWB) system employing the short pulse has the tolerable characteristics for the multipath environment. The corresponding transceiver with low power consumption can be simply implemented. On the other hand, in the receiver side, the precise channel estimation is required for the knowledge of essence in channel due to the short period of pulse. The estimated gains and delays in channel are used in the rake receiver. The resulting parameters we search have a strong influence on the performance in the entire system. We introduce that the essential parameters can be obtained more precisely through the preamble in receiver side for the channel estimation and related technologies are presented.

Performance Analysis of Ultra Wideband Impulse Radio System in Partial Band Interference Environment (부분대역 간섭 환경에서 초광대역 임펄스 무선 전송 시스템의 성능 분석)

  • 이양선;강희조;이권현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.858-864
    • /
    • 2002
  • In this paper, Analyzed Performance of TH/UWB(Time Hopping/Ultra Wideband after Impulse Radio) system in interference environment by existing system that use same frequency band. In case interference fraction ratio is below 0.1, consider and analyzed in case influence through interference in IR system that is shared in 3.1 - 10.6 GHz band hereafter as case that use very small and narrow band than IR system such as 80 MHz bandwidth of ISM band or 802.1la's use bandwidth 20 MHz in 5 GHz band. According to result, we could know that Performance change according to possession band width of interference shows greatly than size of interference electric power. Also, interference fraction ratio is big (more than 0.1) narrowband interference in partial band interference environment, could get Performance improvement of big width increasing pulse repetition number. But, could know that do not influence hardly in system performance when interference fraction ratio is small (below 0.1) narrowband interference. Therefore, may receive the best system performance and transfer efficiency by set the most suitable pulse repetition number according to bandwidth fraction ratio of interference through correct interference fraction ratio estimation and apply proper interference suppression techniques.

Rayleigh-Quotient and Iterative-Threshold-Test-Based Blind TOA Estimation for IR-UWB Systems

  • Shen, Bin;Zhao, Chengshi;Cui, Taiping;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.333-335
    • /
    • 2010
  • This letter proposes a non-coherent blind time-of-arrival (TOA) estimation scheme for impulse radio ultra-wideband systems. The TOA estimation is performed in two consecutive phases: the Rayleigh-quotient theorem-based coarse-signal acquisition (CSA) and the iterative-threshold-test-based fine time estimation (FTE). The proposed scheme serves in a blind manner without demanding any a priori knowledge of the channel and the noise. Analysis and simulations demonstrate that the proposed scheme significantly increases the signal detection probability in CSA and ameliorates the TOA estimation accuracy in FTE.

Time Hopping Sequences Based on Pseudo Random Codes for Ultra Wideband Impulse Radio Systems

  • Kim, Sanhae;Park, Kwang-Hee;Suckchel Yang;Kim, Hak-Seong;Yoan Shin
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1350-1353
    • /
    • 2002
  • A new form of spread spectrum technique called the ultra wideband impulse radio (UWB-IR) system has drawn much attention for future high speed wireless communication services. In this paper, a new type of time hopping sequences constructed from multiple distinct m-sequences of the same order, is proposed for multiple access in the UWB-IR systems. Simulation results reveal that the proposed time hopping sequences achieve comparable or even better bit error rate performance than the ideal random sequences, and can be effectively applied in various multiple access situations.

  • PDF

A 3-5 GHz Non-Coherent IR-UWB Receiver

  • Ha, Min-Cheol;Park, Young-Jin;Eo, Yun-Seong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.4
    • /
    • pp.277-282
    • /
    • 2008
  • A fully integrated inductorless CMOS impulse radio ultra-wideband (IR-UWB) receiver is implemented using $0.18\;{\mu}m$ CMOS technology for 3-5 GHz application. The UWB receiver adopts the non-coherent architecture, which removes the complexity of RF architecture and reduces power consumption. The receiver consists of inductorless differential three stage LNA, envelope detector, variable gain amplifier (VGA), and comparator. The measured sensitivity is -70 dBm in the condition of 5 Mbps and BER of $10^{-3}$. The receiver chip size is only $1.8\;mm\;{\times}\;0.9\;mm$. The consumed current is 15 mA with 1.8 V supply.

Symbol Synchronization Technique using Bit Decision Window for Non-Coherent IR-UWB Systems (Bit Decision 윈도우를 이용한 Noncoherent IR-UWB 수신기의 심벌 동기에 관한 연구)

  • Lee, Soon-Woo;Park, Young-Jin;Kim, Kwan-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.2
    • /
    • pp.15-21
    • /
    • 2007
  • In this paper, we propose a technique of a practical symbol acquisition and tracking using a low complex ADC and simple digital circuits for noncoherent asynchronous impulse-radio-based Ultra Wideband (IR-UWB) receiver based on energy detection. Compared to previous approaches of detecting an exact acquisition time that require much hardware resource, the proposed technique is to detect the target symbol by finding the symbol acquisition interval per symbol with a target symbo, thus the complexity of the complete signal processing and power consumption by ADC are reduced. To do this, we define the bit decision window (BDW) and analyze the relation between SNR, hardware resource, size of BDW and BER(Bit Error Rate). Using the results, the optimum BDW size for the minimum BER with limited hardware resource is selected. The proposed synchronization technique is verified with an aid of a simulator programmed by considering practical impulse channels.