• Title/Summary/Keyword: IPv6 Mobility

Search Result 298, Processing Time 0.027 seconds

Security Threats Analysis for Network-based Mobile IPv6 (네트워크 기반 Mobile IPv6 보안 취약점 분석)

  • Kim, Hyun-Gon;Seo, Jae-Hyeon;Oh, Byeong-Kyun;Ahn, Tae-Nam;Kim, Jin-Hyung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.10
    • /
    • pp.137-147
    • /
    • 2007
  • In the host-based Mobile IPv6, a mobile node is responsible for doing the signaling to its home agent to enable session continuity as it moves between subnets. To remove the mobile node's signalling processing load, the network-based Mobile IPv6 has been proposed recently. It allows session continuity for a mobile node without its involvement in mobility management. The proxy mobility agent in the network performs the signaling and does the mobility management on behalf of the mobile node. However, to make secure communications for a mobile node, security mechanisms against diverse attacks should be adopted. To do this, first of all security threats to the network-based Mobile IPv6 should be also identified and analyzed. Potential attack objectives may be to consume network services at the cost of a legitimate mobile node and, eavesdropping and fabrication of user traffic through interception of a mobile node's communications. This paper identifies and discusses security threats to the network-based Mobile IPv6 in details. The results of threats analysis are limited to threats that are peculiar to the network-based Mobile IPv6 except threats to IPv6 in general.

A Study on Inter-operability of NEMO and PMIPv6 for Enhanced IP Mobility Support (향상된 IP 이동성 지원을 위한 NEMO와 PMIPv6의 상호 운용성에 관한 연구)

  • Kim, Seong-Chul;Lee, Ho-Sun;Cho, Yong-Bum;Cho, Sung-Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.886-889
    • /
    • 2008
  • There are Proxy Mobile IPv6(PMIPv6) and Network Mobility Basic Support Protocol (NEMO BSP) for more enhanced mobility support. These have a common purpose to support seamless IP mobility at network infrastructure level whenever mobile nodes(MNs) move between foreign networks. But it is different that the NEMO BSP supports an entire network's mobility, while the PMIPv6 supports only a single MN's mobility. In this paper, a new scheme is proposed to guarantee an interoperability of PMIPv6 and NEMO BSP.

  • PDF

Cost Analysis of Mobility Management Schemes for IP-based Next Generation Mobile Networks (IP기반의 차세대 모바일 네트워크에서 이동성관리 기법의 비용분석)

  • Kim, Kyung-Tae;Jeong, Jong-Pil
    • Journal of Internet Computing and Services
    • /
    • v.13 no.3
    • /
    • pp.1-16
    • /
    • 2012
  • Cost-effective mobility management for the roaming mobile users is very important in the seamless services on next-generation wireless network (NGWN). MIPv6 (Mobile IPv6) is one of the mobility management schemes proposed by the IETF (The Internet Engineering Task Force) and various IPv6-based mobility management schemes have been developed. They are directly involved with data transfer from MN (Mobile Node). In this paper, two kinds of schemes in analyzing of mobility management schemes are proposed. The signaling transfer and packet delivery procedures for each mobility management schemes are analyzed, respectively. The signaling cost for mobility management schemes are calculated, and the cost of each protocol are analyzed numerically. In other word, applying the sum of signaling cost and packet delivery cost to each mobility management scheme, their costs are analyzed. Finally, our performance evaluation results that the network-based mobility management scheme shows better performance in terms of overall cost.

Analytical Approach of Global Mobility Support Schemes in IP-based Heterogeneous Mobile Networks (IP기반 이종 모바일 네트워크에서 글로벌 이동성 지원기법의 분석적 접근법)

  • Won, Younghoon;Jeong, Jongpil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.3
    • /
    • pp.205-218
    • /
    • 2012
  • Mobility management of the mobile nodes and provision of seamless handover is crucial to an efficient support for the global roaming of the mobile nodes in next-generation wireless networks. Mobile IPv6 and mobility management in extended IP layer, which highly depend on traffic characteristics and user mobility models, were proposed by the IETF. Therefore, to evaluate the in-depth performance about these factors is important. Generally, the performance of IPv6-based mobility management protocol is evaluated through simulation. This paper shows the correlation between network parameters and performance metrics through numerical results, which is investigated how influence handoff latency and packet loss. And this paper uses mathematical analysis of the system parameters, such as the subnet residence time, the packet arrival rate and delay in wireless connection through the analytical framework which evaluate the performance of IPv6-based mobility management protocol.

The Design of Diameter Application supporting Mobile IPv6 (Mobile IPv6를 지원하는 Diameter 프로토콜의 설계)

  • Kim Marie;Kim Hyungon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1C
    • /
    • pp.99-106
    • /
    • 2005
  • This Paper suggests the cooperation scenarios between Diameter protocol and Mobile IPv6 protocol. First, this paper designs cooperation scenarios and designs mobility support technology based on the designed scenarios. This paper deanes the interfaces between mobile node and local AAA client using ICMPv6 messages. In addition, this paper designs handoff procedures according to the area, which mobile node moves to.

Analytical Approach of Multicasting-based Fast Mobility Management Scheme in Proxy Mobile IPv6 Networks (프록시 모바일 IPv6 네트워크에서 멀티캐스팅기반 빠른 이동성관리 기법의 분석적 접근법)

  • Kim, Young Hoon;Jeong, Jong Pil
    • Journal of Internet Computing and Services
    • /
    • v.14 no.3
    • /
    • pp.67-79
    • /
    • 2013
  • In wireless networks, efficient mobility management to support of mobile users is very important. Several mobility management schemeshave been proposed with the aim of reducing the signaling traffic of MN(Mobile Node). Among them, PMIPv6 (Proxy Mobile IPv6) is similar with host-based mobility management protocols but MN does not require any process for mobility. By introducing new mobile agent like MAG (Mobile Access Gateway) and LMA (Local Mobility Anchor), it provides IP mobility to MN. In this paper, we propose the analytical model to evaluate the mean signalingdelay and the mean bandwidth according to the type of MN mobility. As a result of mathematical analysis, MF-PMIP (Multicasting-based FastPMIP) outperforms compared to F-PMIP and PMIP in terms of parameters for the performance evaluation.

Global Mobility Support in Network Based Proxy Mobile IPv6 (네트워크 기반 프록시 모바일 IPv6에서 글로벌 이동 지원에 관한 연구)

  • Phung, Gia Khiem;Ro, Soong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.688-696
    • /
    • 2010
  • The Proxy Mobile IPv6 (PMIPv6) is a network localized mobility management protocol that is independent of global mobility management protocols. In a single mobility domain (LMD), the mobile node (MN) is not involved in any IP mobility-related signaling and uses only its PMIPv6 home address for all its communication. Subsequently, when the MN moves into another LMD, the MN must change its PMIPv6 home address. In such a circumstance, host-based mobility signaling is activated. Thus, the nature of the network-based mobility of the PMIPv6 cannot be retained. Additionally, if the MN does not support global mobility, it cannot maintain communication with its correspondent node (CN). In this paper, we propose a solution for global mobility support in PMIPv6 networks, called Global-PMIPv6 that allows current communication sessions of a MN without mobility protocol stacks to be maintained, even when the MN moves into another LMD. Thus, Global-PMIPv6 retains the advantages of the PMIPv6 for global mobility support. We then evaluate and compare network performance between our proposed solution and PMIPv6.

Performance Evaluation of Diffserv Model for Providing QoS in Mobile IPv6 Networks (Mobile IPv6망에서 QoS 제공을 위한 Diffserv 모델의 성능 평가)

  • Kim, Mi-Sun;Mun, Young-Song
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.5
    • /
    • pp.380-394
    • /
    • 2006
  • Traditional Internet services provide the same level of qualify to all users without considering about their application's QoS (quality of service) requirements. Because the wireless and Internet technologies are evolving rapidly, the powerful mobile devices are more widely used. Therefore, the new applications such as DMB (digital multimedia broadcasting), VoD (video on demand), telemedicine, and etc. demand appropriate QoS and host mobility. To satisfy free mobility and QoS, we deploy Diffserv (differentiated services) model to the mobile IPv6 networks. We propose the operational procedures and cost analyzing models for providing an MN's mobility and QoS. Also its performance is presented by cost analyzing and the future works are described.

Tree based Route Optimization in Nested NEMO Environment (중첩 NEMO 환경에서 트리 기반 라우트 최적화 기법)

  • Lim, Hyung-Jin;Chung, Tai-Myoung
    • Journal of Internet Computing and Services
    • /
    • v.9 no.1
    • /
    • pp.9-19
    • /
    • 2008
  • This paper propose the issue of connecting nested NEMO (Network Nobility) networks to global IPv6 networks, while supporting IPv6 mobility. Specifically, we consider a self-addressing including topology information IPv6-enabled NEMO infrastructure. The proposed self-organization addressing protocol automatically organized mobile routers into free architecture and configuration their global IPv6 addresses. BU(binding update) to MR own HA and internal rouging, hosed on longest prefix matching and soft state routing cache, are specially designed for IPv6-based NEMO. In conclusion, numeric analysis ore conducted to show more efficiency of the proposed routing protocols than other RO (Route Optimization) approaches.

  • PDF

Leveraging Proxy Mobile IPv6 with SDN

  • Raza, Syed M.;Kim, Dongsoo S.;Shin, DongRyeol;Choo, Hyunseung
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.460-475
    • /
    • 2016
  • The existing Proxy Mobile IPv6 suffers from a long handover latency which in turn causes significant packet loss that is unacceptable for seamless realtime services such as multimedia streaming. This paper proposes an OpenFlow-enabled proxy mobile IPv6 (OF-PMIPv6) in which the control of access gateways is centralized at an OpenFlow controller of a foreign network. The proposed OF-PMIPv6 separates the control path from the data path by performing the mobility control at the controller, whereas the data path remains direct between a mobile access gateway and a local mobility anchor in an IP tunnel form. A group of simple OpenFlow-enabled access gateways performs link-layer control and monitoring activities to support a comprehensive mobility of mobile nodes, and communicates with the controller through the standard OpenFlow protocol. The controller performs network-layer mobility control on behalf of mobile access gateways and communicates with the local mobility anchor in the Proxy Mobile IPv6 domain. Benefiting from the centralized view and information, the controller caches the authentication and configuration information and reuses it to significantly reduce the handover latency. An analytical analysis of the proposed OF-PMIPv6 reactive and proactive handover schemes shows 43% and 121% reduction in the handover latency, respectively, for highly utilized network. The results gathered from the OF-PMIPv6 testbed suggest similar performance improvements.