• Title/Summary/Keyword: IPTs

Search Result 9, Processing Time 0.024 seconds

Uniform Current Distribution among Conductor Layers in HTS Cables Using Inter-Phase Transformers (Inter-Phase Transformers를 이용한 고온 초전도 케이블의 층간 전류 등분배 방안)

  • 최용선;황시돌;현옥배;임성우;박인규
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.144-148
    • /
    • 2004
  • Uniform current distribution among conductor layers in HTS cables using IPTs (inter-phase transformers) was investigated. Conventional methods for current distribution, in which resistors are inserted to conductor layers, causes additional loss. In contrast, IPTs, which use magnetic coupling, make it possible that the current in parallel circuits is distributed uniformly with any load, and minimize the loss. In this study, IPTs were designed and fabricated for examination of uniform current distribution in the conductor layers of HTS cables. The ITP was designed through calculation of its impedance that can cancel the inductance of the conduction layers. The experimental setup consisted of four IPTs and four inductors that simulate the conductor layer inductance. Each layer was designed to feed 10 A. We examined the behavior of current distribution with IPTs for various layer inductances.

  • PDF

A method for uniform current distribution of HTS cable using Inter-Phase Transformers (Inter-Phase Transformers를 이용한 고온초전도 케이블의 층간 전류 등분배 방안)

  • Choi, Yong-Sun;Yim, Seong-Woo;Sim, Jung-Wook;Hwang, Si-Dole;Park, In-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.973-975
    • /
    • 2003
  • Uniform current distribution among conductor layers in HTS cables using IPTS (inter-phase transformers) was proposed. Conventional methods for current distribution, in which resistors are inserted to conductor layers, causes additional loss. In contrast, IPTS, which use magnetic coupling, make it possible that the current in parallel circuits is distributed uniformly with any load, and minimize the loss. In this study, IPTS were designed and fabricated for examination of uniform current distribution in the conductor layers of HTS cables. The ITP was designed through calculation of its impedance that can cancel the inductance of the conduction layers.

  • PDF

Gyrator-Based Analyses of Resonant Circuits in Inductive Power Transfer Systems (자이레이터를 이용한 자기유도 전력전달시스템의 공진 회로 해석)

  • Sohn, Yeong H.;Choi, Bo H.;Cho, Gyu-Hyeong;Rim, Chun T.
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.17-18
    • /
    • 2015
  • 본 논문에서는 자이레이터를 사용하여 자기유도 전력전달시스템(IPTS)의 보상 회로를 해석하는 방식을 제안한다. 보상회로를 주로 구성하는 갖가지 공진 회로와 유도 결합 코일이 자이레이터의 특성을 가지고 있음을 보인다. 그러므로, 자이레이터의 바람직한 특성들을 보상 회로의 전원-로드 이득, 전원의 역률 등을 해석하는데 사용할 수 있음을 보인다. 제안된 해석 방식은 적용이 간편하고 서로 다른 보상 회로에도 동일한 형태로 적용된다는 장점이 있다.

  • PDF

Conceptual Design of a Ground Launcher System, Using ICDM - Integrated, Customer Driven, Conceptual Design Method (통합개념설계 방법론을 이용한 지상 발사장비 개념설계 연구)

  • Lee, Jae-Ryul;Park, Young-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.56-65
    • /
    • 2006
  • It is well known and widely accepted that the conceptual design is the most influential step in the design process of a product or a system and that about 75% of the life cycle cost is committed as the results of this stage. The purpose of this paper is to present and demonstrate the step of ICDM(Integrated, Customer Driven, Conceptual Design Method) for the development of a ground launcher system, TEL(Transporter, Erector and Launcher). The results of the study show the effectiveness of the method during the conceptual design phase of new complex systems or high-tech products.

Analysis of the Defense R & D Programs Applied Systems Engineering Approach (국방 연구개발사업의 시스템엔지니어링 적응사례 분석)

  • Kwon, Yong-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.41-49
    • /
    • 2006
  • A systems engineering is an interdisciplinary engineering management process that evolves and verifies an integrated, life-cycle balanced set of system solutions that satisfy customer needs. This work describes analysis of. the defense R & D programs applied systems engineering approach. FA-18E/F and NSSN defense acquisition programs are adopted for the case study. Those two programs is performed by IPPD, which is one of the systems engineering management techniques. From the analysis results, implementation considerations of domestic defense R & D programs are presented.

전류원 급전-변압기 공진형 자기유도 전력전달시스템 특성연구

  • Heo, Jin;Lee, U-Yeong;Jo, Jeong-Gu;Jo, Gyu-Hyeong;Im, Chun-Taek
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.355-356
    • /
    • 2010
  • 일반도로에서 자유주행이 가능한 온라인 전기자동차(On-Line Electric Vehicle, OLEV)에 적용하기 위해 전류원 급전방식의 직렬-직렬 공진형 자기유도 전력전달시스템(Inductive Power Transfer System, IPTS)을 개발하였다. OLEV용 IPTS에서는 급전선로의 누설 인덕턴스가 크고 집전픽업의 유무에 따라 입력측에 유기되는 전압변동이 심한 특성을 반영하여 급전측에 공진형 전류원을 사용한다. 또한 자화 인덕턴스와 집전픽업의 누설 인덕턴스를 포함하여 변압기를 완전 공진시킨다. 본 논문에서는 이러한 방식의 IPTS에서 최대출력을 전달하기 위한 조건을 찾고, 이로써 최대 출력전류 및 출력전력을 제한하는 요인을 찾아 최적설계를 할 수 있도록 하였다. 또한 실험을 통해 그 타당성을 검증하였다.

  • PDF

Ionic Polymer Transducers in sensing: the streaming potential hypothesis

  • Weiland, Lisa Mauck;Akle, Barbar
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.211-223
    • /
    • 2010
  • Accurate sensing of mechanical strains in civil structures is critical for optimizing structure reliability and lifetime. For instance, combined with intelligent control systems, electromechanical sensor output feedback has the potential to be employed for nondestructive damage evaluation. Application of Ionic Polymer Transducers (IPTs) represents a relatively new sensing approach with more than an order of magnitude higher sensitivity than traditional piezoelectric sensors. The primary reason this sensor has not been widely used to date is an inadequate understanding of the physics responsible for IPT sensing. This paper presents models and experiments defending the hypothesis of a streaming potential sensing mechanism.

Bidirectional Magnetic Wireless Communication System under Inductive Power Transfer capable of Amplitude-Shift Keying(ASK) Modulation Control (자기유도 무선전력전송시 진폭편이변조 제어가 가능한 양방향 자기장 무선통신 시스템)

  • Choi, Byeung-Guk;Lee, Eun-Soo;Rim, Chun-Taek
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.275-281
    • /
    • 2016
  • A novel bidirectional magnetic wireless communication system is proposed in this study. This system provides the communication capability between the source and load sides by high-frequency signal while wireless power is transferred. Contrary to the conventional wireless communication systems using complex IC circuit and active components, the proposed system is simply composed of passive components. It is practical and beneficial for environmental robustness, cost effectiveness, and simple implementation. The detailed static analysis of the proposed system for power and communication lines is established. The proposed system is experimentally verified, and results show that a 0.1 voltage gain for communication line is obtained while a 2.0 voltage gain for the power line is achieved. The proposed system is adequate for practical applications as it allows the inductive power transfer system to wirelessly and easily communicate between the source and load sides.

Smartphone-based structural crack detection using pruned fully convolutional networks and edge computing

  • Ye, X.W.;Li, Z.X.;Jin, T.
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.141-151
    • /
    • 2022
  • In recent years, the industry and research communities have focused on developing autonomous crack inspection approaches, which mainly include image acquisition and crack detection. In these approaches, mobile devices such as cameras, drones or smartphones are utilized as sensing platforms to acquire structural images, and the deep learning (DL)-based methods are being developed as important crack detection approaches. However, the process of image acquisition and collection is time-consuming, which delays the inspection. Also, the present mobile devices such as smartphones can be not only a sensing platform but also a computing platform that can be embedded with deep neural networks (DNNs) to conduct on-site crack detection. Due to the limited computing resources of mobile devices, the size of the DNNs should be reduced to improve the computational efficiency. In this study, an architecture called pruned crack recognition network (PCR-Net) was developed for the detection of structural cracks. A dataset containing 11000 images was established based on the raw images from bridge inspections. A pruning method was introduced to reduce the size of the base architecture for the optimization of the model size. Comparative studies were conducted with image processing techniques (IPTs) and other DNNs for the evaluation of the performance of the proposed PCR-Net. Furthermore, a modularly designed framework that integrated the PCR-Net was developed to realize a DL-based crack detection application for smartphones. Finally, on-site crack detection experiments were carried out to validate the performance of the developed system of smartphone-based detection of structural cracks.