• Title/Summary/Keyword: IPMSM Parameter

Search Result 75, Processing Time 0.02 seconds

The Sensorless Speed Control of an Interior Permanent Magnet Synchronous Motor using an Adaptive Integral Binary Observer and a Fuzzy Controller (적분 바이너리 관측기와 퍼지 제어기를 이용한 IPMSM 센서리스 속도제어)

  • Lee, Hyoung;Kang, Hyoung-Seok;Jeong, U-Taek;Kim, Young-Seok;Shin, Jae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.925-926
    • /
    • 2006
  • This paper presents a sensorless speed control of an interior permanent magnet synchronous motor using an adaptive integral binary observer and fuzzy logic controller. In view of composition with a main loop regulator and an auxiliary loop regulator, the binary observer has a property of the chattering alleviation in the constant boundary layer. However, the steady state estimation accuracy and robustness are dependent upon the width of the constant boundary. In order to improve the steady state performance of the binary observer, the binary observer is formed by adding extra integral dynamics to the switching hyperplane equation. Also, because the conventional fixed gain PI controller are very sensitive to step change of command speed, parameter variations and load disturbance, the fuzzy logic controller is used to compensate a fixed gain PI controller. Therefore, a gain PI is fixed and the IPMSM is drived at another speed region. The effectiveness of the proposed the adaptive integral observer and the fuzzy logic controller are confirmed by experimental results.

  • PDF

Simple Initial Rotor Position Estimation for Stable Startup of IPMSM Sensorless Control (IPMSM 센서리스 제어의 안정된 기동을 위한 간단한 초기회전자 추정기법)

  • Kim, Gun-Myoung;Park, Byoung-Gun;Goo, Bon-Gwan;Kim, Rae-Young;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.602-609
    • /
    • 2011
  • This paper proposes a simple initial rotor position estimation method to obtain a stable startup performance for back EMF-based sensorless control. The proposed estimation method is achieved at standstill by using the current response to difference between each of the stator winding inductance. This initial rotor position estimation method can be easily implemented to control algorithm without any other external devices. The proposed algorithm is also not affected by motor parameter. The validity of the proposed method is demonstrated by experimental result.

Sensorless Control Strategy of IPMSM Based on a Parallel Reduced-Order Extended Kalman Filter (병렬형 저감 차수 칼만 필터를 이용한 매입형 영구자석 동기전동기의 센서리스 제어)

  • Yim, Dong-Hoon;Park, Byoung-Gun;Kim, Rae-Young;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.266-273
    • /
    • 2011
  • This paper proposes a novel sensorless control scheme for a Permanent Magnet Synchronous Motor (PMSM) by using a parallel reduced-order Extended Kalman Filter. The proposed scheme can obtain rotor position and speed by back-EMF that is estimated by reduced-order EKF and save computation time greatly due to using a parallel structure that works by turns every sampling time. Therefore, proposed scheme has merits of conventional EKF, and problems of parameter sensitivity are partially overcome. And proposed scheme can safely estimate rotor speed and position by using new algorithms according to driving regions. Experimental results show the validity of the proposed estimation technique, and to verify the merit of the proposed scheme, a comparison of a new reduced-order EKF algorithm with a conventional EKF algorithm has been also made in terms of computation time.

Maximum Torque Operation of a PM Synchronous Motor for HEV under Parameter Variation (HEV용 영구자석 동기전동기의 상수변동 시 최대토크 운전)

  • Cho, Kwan-Yuhl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5128-5134
    • /
    • 2011
  • This paper investigates the dq current trajectory for maximum torque per ampere(MTPA) operation of an interior PM synchronous motor for HEV(Hybrid Electric Vehicle). Based on the dq current trajectory for the MTPA operation derived from the motor parameters, the change of the MTPA operating point for the variation of the motor parameters including the magnet flux and the dq inductances is considered. The dq current trajectory for MTPA operation is verified through the experiment.

Core-loss reduction on PM for IPMSM with concentrated winding (집중권을 시행한 영구자석 매입형 동기전동기의 철손 저감)

  • Lee, Hyung-Woo;Park, Chan-Bae;Lee, Byung-Song;Kim, Nam-Po
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1832-1837
    • /
    • 2011
  • This paper presents the optimal permanent magnet shape on the rotor of an interior permanent magnet motor to reduce the core losses and improve the performance. As permanent magnet has conductivity inherently, it causes huge amount of eddy current losses by the slot harmonics with concentrated winding. This loss is roughly 100 times larger than that of distributed winding in high speed operation and it cannot be ignored, especially on traction motors. Each eddy current loss on permanent magnet has been investigated in detail by using FEM(Finite Element Method) instead of EMCNM(Equivalent Magnetic Circuit Network Method) in order to consider saturation and non-linear magnetic property. Simulation-based DOE(Design Of Experiment) is also applied to avoid large number of analyses according to each design parameter and consider expected interactions among parameters. Consequently, the optimal design to reduce the core loss on the permanent magnet while maintaining or improving motor performance is proposed by an optimization algorithm using regression equation derived and lastly, the core loss reduction on the proposed shape of the permanent magnet is verified by FEM.

  • PDF