• 제목/요약/키워드: IPMSM(Interior Permanent Magnet Synchronous Motor)

검색결과 295건 처리시간 0.026초

철도차량용 영구자석 동기전동기의 열해석 기법 연구 (Investigation of a Thermal Analysis Method for IPMSM in Railway Vehicles)

  • 박찬배;이형우;이병송
    • 한국철도학회논문집
    • /
    • 제16권2호
    • /
    • pp.99-103
    • /
    • 2013
  • 본 논문에서는 철도차량 추진용 매입형 영구자석 동기전동기(Interior Permanent Magnet Synchronous Motor, IPMSM)의 운전 중 열 발생 특성 분석을 위한 열해석 기법 연구를 수행하였다. IPMSM의 구동 중에 권선, 코어, 영구자석에서 발생되는 과도한 열은 IPMSM의 장시간 연속운전을 어렵게 만들기 때문에, IPMSM에서 발생된 열의 효율적인 냉각이 중요하다. 따라서 본 연구에서는 IPMSM의 냉각장치 적용을 위한 선행 연구로써 IPMSM 의 열 발생 특성 분석을 위하여 IPMSM의 각 구성품에 대한 열전달 계수를 도출하고, 열 등가회로를 구성하여 열해석을 수행하는 열해석 기법 연구를 수행하였다. 또한 IPMSM 실 모델의 열 실험 데이터와의 비교를 통한 열해석 기법의 유효성 검증을 수행하였다.

Numerical Investigation on Permanent-Magnet Eddy Current Loss and Harmonic Iron Loss for PM Skewed IPMSM

  • Lim, Jin-Woo;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.417-422
    • /
    • 2011
  • This paper presents the characteristics of PM eddy current loss and harmonic iron loss for PM step-skewed Interior Permanent Magnet Synchronous Motor (IPMSM) with concentrated windings and multi-layered PM under the running condition of maximum torque per ampere (MTPA) and flux-weakening control. In particular, PM eddy current loss and harmonic iron loss in IPMSM have been numerically computed with three-dimensional Finite Element Analysis (3D FEA), whereby IPMSM with concentrated windings and multi-layered PM has been designed to identify the optimized skew angle contributing to the reduced PM eddy current loss and torque ripples, while maintaining the required average torque. Furthermore, numerical investigation on PM eddy current loss and iron loss at MTPA and flux-weakening control has been carried-out in terms of PM step-skew.

극호비 변화에 따른 영구자석 매입형 동기전동기의 토크 특성 해석 (Torque Characteristics Analysis of Interior Permanent Magnet Synchronous Motor According to Pole Arc Ratio)

  • 이갑재;김기찬;이종인;권중록
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권2호
    • /
    • pp.81-87
    • /
    • 2005
  • The torque characteristics of permanent magnet(PM) motor is varied according to magnet width. In this paper, the design method of magnet and magnetic circuit is proposed in order to improve the torque of Interior Permanent Magnet Synchronous Motor(IPMSM). This paper presents the effects of pole arc ratio and salient pole ratio on the torque and torque ripple in the IPMSM with concentrated winding.

도시철도차량용 IPMSM의 Magnet Segment 변화에 따른 특성 분석에 관한 연구 (A Study on the Characteristics Analysis According to the Permanent Magnet Segmentation Change to IPMSM for Urban Railway Vehicle)

  • 정거철;박찬배;정태철;이주
    • 전기학회논문지
    • /
    • 제64권10호
    • /
    • pp.1486-1492
    • /
    • 2015
  • The following study carried out the characteristic analysis based on the magnet segment of Interior Permanent Magnet Synchronous Motor(IPMSM) for the urban railway vehicles. IPMSM affects the electromagnetic characteristics through the change in magnetic flux based on the rotor structure, and significantly influences the structural features through the change of pressure. Therefore, satisfied by the demanded traction force of the IPMSM, magnet segment derived three different model types. The 1-segment PM model consisted an undivided permanent magnet. The 2-Bridge model consisted a divided permanent magnet with the application of Bridge. The 3-Bridge model consisted additional dividing with one more Bridge applied. The electromagnetic characteristics of the three models were compared and analyzed along with the structural features regarding the scattering of permanent magnet based on strong centrifugal force from the rotation of the rotor at high speed. In conclusion, the final model with electromagnetic characteristics and structural features most suitable of IPMSM for the urban railway vehicles was derived, and the effectiveness was verified through the characteristic experiments after the production of the derived model.

Sliding Mode Observer for Sensorless Control of IPMSM Drives

  • Jung, Young-Seok;Kim, Marn-Go
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.117-123
    • /
    • 2009
  • This paper presents a sliding mode observer for the sensorless control of interior permanent magnet synchronous motor (IPMSM) drives. The sliding mode observer has been presented as a robust estimation method. Most of these previous works, however, were not for an interior PMSM (IPMSM), but for a non-salient pole PMSM and its observer design is conducted in the stationary reference frame. Thus, in this paper, we investigate the design of a sliding mode observer and its driving characteristics for an IPMSM. The proposed sliding mode observer is designed in the rotating reference frame, and good drive performance is achieved even when the observer parameters are mismatched with those of an actual motor. The proposed method is applied to a 600W IPMSM, and, then, the measurement results are presented.

매입형 영구자석 동기기 센서리스 구동부의 개선된 절환 기법 (Improved Transition Method for Sensorless Operation of Interior Permanent Magnet Synchronous Motor Drives)

  • 한동엽;윤재승;조용수;이교범
    • 전기학회논문지
    • /
    • 제65권8호
    • /
    • pp.1362-1368
    • /
    • 2016
  • This paper proposes the improved transition scheme for a sensorless drive of an interior permanent magnet synchronous motor (IPMSM). In order to operate the IPMSM, the current controller can be used until 300 rpm for the initial operation. After that, the control method of IPMSM is changed to the speed controller for the sensorless control method. At that point, the rotor speed overshoot is generated due to the rapid change of the current reference for the speed controller. The proposed algorithm is able to reduce the overshoot of a rotor speed by compensating the estimated feedforward value to the speed controller. The feedforward value of the current reference is estimated by using a coordinate transformation and is approximated to the current reference after the transition of the control mode. The effectiveness of the proposed scheme is verified by experiments using an IPMSM drive system.

약계자 영역에서의 순시 무효전력을 이용한 매입형 영구자석 동기전동기의 센서리스 속도제어 (Sensorless speed Control of Interior Permanent Magnet Synchronous Motor based on Instantaneous Reactive Power in the Field-Weakening Region)

  • 강형석;김원석;김영조;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.923-924
    • /
    • 2006
  • For the interior permanent magnet synchronous motor(IPMSM) drive to operate above the base speed in the constant horsepower region, field weakening control is applied. However, the field weakening control was not almost applied to sensorless control of the interior permanent magnet synchronous motor. In this parer, field weakening control is applied to the sensorless control of IPMSM based on an instantaneos reactive power. The effectiveness of the Proposed system is verified by the experimental results.

  • PDF

철도차량용 매입형 영구자석 동기전동기의 영구자석 와전류 손실 분석 연구 (Analysis of Eddy Current Loss on Permanent Magnets of Interior Permanent Magnet Synchronous Motor for Railway Transit)

  • 박찬배;이형우;이병송;김남포
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2310-2316
    • /
    • 2011
  • In order to apply Interior Permanet Magnet Synchronous Motor(IPMSM) to the propulsion system of the railway transit, 110 (kW) class IPMSMs with high-power density are designed as a concentrated winding model and a distributed winding model in this study. The concentrated winding model designed in this study is 6 poles/9 slots and the distributed winding model is 6 poles/36 slots. In general, the eddy current losses in the permanent magnets of IPMSM are caused by the slot harmonics. The thermal demagnetization of the magnet by the eddy current losses at high rotational speed often becomes one of the major problems in the IPMSM with a concentrated windings especially. A design to reduce eddy current losses in permanent magnets design is important in IPMSM for the railway vehicle propulsion system which requires high-speed operation. Therefore, a method to devide the permanent magnet is proposed to reduce the eddy current losses in permanent magnet in this study. Authors analyze the variation characteristics of the eddy current losses generated in permanent magnet of the concentrated winding model by changing the number of the division of the permanent magnets.

  • PDF

극 수와 슬롯 수 조합에 따른 집중권 방식 매입형 영구자석 동기전동기의 Normal Forces 및 설계 파라미터의 비교에 관한 연구 (A Study on Comparison of Normal Force and Design Parameters in IPMSM(Interior Permanent Magnet Synchronous Motor) with Concentrated Winding according to Pole-Slot Combinations)

  • 하승형;권순오;반지형;정재우;홍정표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.765-766
    • /
    • 2006
  • Interior Permanent Magnet Synchronous Motor(IPMSM) have many advantages such as high power density, wide speed range and so on. With the IPMSM, miniaturization and energy efficient design can be achieved in comparison with Surface Permanent Magnet Synchronous Motor(SPMSM). In order to secure miniaturization and manufacturing efficiency of the motor, it has concentrated winding, because concentrated winding can reduce the motor volume and make manufacturing to be simple compared with the distributed winding. However, according to the pole-slot combinations motor parameters can be changed and unexpected normal force can be generated. Especially, unbalanced normal force in airgap can cause serious vibration and acoustic problem. Accordingly, in this paper, normal force and parameters variation of concentrated winding IPMSM are investigated according to the pole-slot combinations.

  • PDF

Investigation on Electromagnetic Field Characteristics of Interior Permanent Magnet Synchronous Machine Considering Harmonics of Phase Current due to Influence of Mechanical Energy Storage System

  • Park, Yu-Seop
    • Journal of Magnetics
    • /
    • 제22권1호
    • /
    • pp.78-84
    • /
    • 2017
  • This paper investigates the influence of mechanical energy storage on the interior permanent magnet synchronous machine (IPMSM) when it is operated in the generating mode. An IPMSM with six-poles and nine-slots employing concentrated coil winding type is considered as the analysis model, and a surface-mounted permanent magnet synchronous motor directly connected to a heavy wheel is applied as the mechanical energy storage system by using the moment of inertia. Based on the constructed experimental set-up with manufactured machines and power converters, the generated electrical energy is converted into the mechanical energy, and the electromagnetic filed characteristics of IPMSM are subsequently investigated by applying the measured phase current of IPMSM based on finite element method. Compared to the characteristics in a no-load condition, it is confirmed that the magnetic behavior, radial force, and power loss characteristics are highly influenced by the harmonics of the phase current due to the mechanical energy storage system.