• Title/Summary/Keyword: IPM motor

Search Result 164, Processing Time 0.025 seconds

Electromagnetic Performance improvement and Rib thickness Reduction by making a hole on Interior Permanent Magnet Synchronous Motor (IPMSM의 Hole에 의한 Rib의 두께 감소와 전자기적 성능 향상)

  • Lee, Tae-Geun;Kim, Do-Jin;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.867_868
    • /
    • 2009
  • Interior permanent magnet synchronous motor [IPMSM] which has high power density is applied to motor for Hybrid electric vehicle[HEV], Electric vehicle[EV], Fuel cell electric vehicle[FCEV] and electric home appliances. In order to improve efficiency performance of IPMSM, this paper presented a study by making a hole around air barrier. Because concentrated rib stress is distributed by suitable hole, the hole can reduce rib thickness of IPM rotor. And it can help decrease PM[Permanent Magnet] leakage flux. Saliency ratio($L_q/L_d$) is also increased by magnetic circuit change. For this study, structure analysis of rotor is performed by Ansys program.

  • PDF

Implementation of Brushless Linear Motor Drive using DSP (DSP를 이용한 브러쉬 없는 선형 모터 드라이브 구현)

  • Kim, Sang-U;Park, Jeong-Il;Lee, Gi-Dong;Lee, Seok-Gyu;Jeong, Jae-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.155-160
    • /
    • 2002
  • In this paper, a controller design for brushless linear motor is implemented. The designed controller is mainly composed of current, speed and position controller, which are carried out by the high-speed digital signal processor (DSP). In addition the PWM inverter is controlled by space voltage PWM method. This system is implemented by using 32-bit DSP (TMS320C31), a high-integrated logic device (EPM7192), and IPM (Intelligent Power Module) for compact and powerful system design. The experimental results show the effective performance of controller for the brushless linear motor.

A Study on Development of Electric Motor for High Voltage Automotive System (자동차 고전압 장치용 전동 모터 개발에 관한 연구)

  • Kim, Byeong-Woo;Hur, Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.80-87
    • /
    • 2008
  • A lot of conventional automotive components driven by mechanical power source are being replaced with electrical ones to comply with the demands of market and customer, therefore the amount of electric energy used in a vehicle will be increased continuously. The increment of electric power demand causes interest on new higher power system such as 42V Power Net, and furthermore necessity for development of energy storage device is highlighted recently. This paper present the design of the BLDC motor for electric air-conditioner in 42V system and compare with the characteristics of several type BLDC motor.

A study on self tuning of indirect vector controller of induction motor (유도전동기 간접벡터제어기의 자기동조에 관한 연구)

  • 임재우;한권상;전호인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1056-1059
    • /
    • 1996
  • In this paper, we analyzed the effect of the change of the rotor time constant on the performance of the indirect vector control system. By employing indirect field orientation technique, we have also suggested an optimal control algorithm that allows an induction motor to maintain the maximum torque under the changing environment of rotor time constant. A computer simulation on the transient response of the output torque was demonstrated. To verify the validity of the method that has been proposed in this paper, an experiment has been performed utilizing TMS32OC31(40MHz) DSP chip which is capable of performing floating-point arithmetic in real time.

  • PDF

Induction Motor Position Control Using Integral-Compensating Variable Structure Control Algorithm (적분보상형 가변구조제어기법을 이용한 유도 전동기 위치제어)

  • 강문호
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.6
    • /
    • pp.323-332
    • /
    • 2003
  • This paper proposes a variable structure position controller for an induction motor(IM) which uses a reaching law and an integral compensating nonlinear switching function. With the integral compensating nonlinear switching function, both very low overshoot and high steady state control accuracy can be obtained by compensating the states chattering problem due to the unmodelled dynamics of inverter and feedback sensors. With the reaching law, reaching mode can be established quantitatively during transient state so that dynamic control performance is improved. For experiment a digital servo driver which consists of a DSP and an IPM inverter was developed. With the various experimental results, IM position control performance was verified.

Development of Linear motor diver for high speed and stiffness feed system (고속 고강성 이송시스템을 위한 리니어 모터 드라이브 개발)

  • 최정원;김상은;이기동;박정일;이석규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.167-169
    • /
    • 2001
  • In this paper, a controller design for high speed and stiffness linear motor is implemented. The designed controller is mainly composed of speed and current controller, which are carried out by the high-speed digital signal processor(DSP). In addition the PWM inverter is controlled by space voltage PWM method. This system is implemented by using 32-bit DSP(TMS320C31), a high-integrated logic device(EPM7128), and IPM(Intelligent Power Module) for compact and powerful system design. The experimental results show the effective performance of controller for high speed and stiffness linear motor.

  • PDF

Implementation of Brushless Linear Motor Driver (브러쉬없는 리니어 모터 드라이브 구현)

  • 김상우;박정일;이기동;정재한;서경열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.969-972
    • /
    • 2000
  • In this paper, a controller design for brushless linear motor is proposed. The designed controller is mainly composed of speed and current controller, which are carried out by the high-speed digital signal processor(DSP). In addition the PWM inverter is controlled by space voltage PWM method. This system is implemented using by 32-bit DSP(TMS320C31), a high-integrated logic device(EPM7128), and IPM(Intelligent Power Module) for compact and powerful system design. The experimental results show the effective performance of controller for the brushless linear motor.

  • PDF

Sensorless Control for a PM Synchronous Motor in a Single Piston Rotary Compressor

  • Cho Kwan-Yuhl
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.29-37
    • /
    • 2006
  • A sensorless control for an IPM (Interior Permanent Magnet) synchronous motor in a single piston rotary compressor is presented in this study. The rotor position is estimated from the d-axis and q-axis current errors between the real system and a motor model of the position estimator. The torque pulsation of the single piston rotary compressor is compensated to reduce speed ripples, as well as, mechanical noise and vibration. The proposed sensorless drive enables the compressor to operate at a lower speed which increases energy savings and reduces mechanical noise. It also gives high speed operations by a flux weakening control for rapid air-cooling and heating of the heat pump air-conditioners.

A study on the design of driver for Lroness Linear Synchronous Motor (무철심형 선형 동기전동기의 드라이브 설계에 관한 연구)

  • Kim, Sang-Woo;Lee, Jae-Hun;Kim, Sang-Eun;Kim, Jong-Moo;Lee, Suk-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2522-2524
    • /
    • 2000
  • In this paper, a controller design for ironless linear synchronous motor is proposed. The designed controller is mainly composed of speed and current control, which are carried out by the high-speed digital signal processor(DSP). In addition the PWM inverter is controlled by space voltage PWM method. This system is implemented using by 32-bit DSP(TMS32OC31), a high-integrated logic device(EPM940), and IPM(Intelligent Power Module) for compact and powerful system design. The experimental results show the effective performance of controller for careless linear synchronous motor.

  • PDF

Torque Ripple Minimization for IPMSM with Non Sinusoidal Back-EMF (비정현적인 역기전력을 가진 매입형 영구자석 동기전동기의 토크리플 저감에 관한 연구)

  • 이상훈;홍인표;박성준;김철우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.91-100
    • /
    • 2002
  • This paper deals with the ripple reduction of the electromagnetic torque developed in IPMSM(Interior Permanent Magnet Synchronous Motor). Generally, torque ripple is an important causes of vibration and noise of motor. For reducing torque ripple in IPM with nonsinusoidal EMF, the optimal current which is able to control maximum torque/ampere is considered to be introduced In the proposed method. The fact of torque ripple being reduced when the optimal current Is used in motor is verified through simulation and experiment.