• Title/Summary/Keyword: IPM(Interior permanent magnet motor)

Search Result 81, Processing Time 0.021 seconds

Design and Analysis of Characteristics of Interior Permanent Magnet BLDC Motor That Consider Shape-Ratio of Permanent Magnet (영구자석 형상비를 고려한 영구자석 매입형 BLDC 전동기 설계 및 특성해석)

  • Yun Keun-Young;Rhyu Se-Hyun;Yang Byoung-Yull;Kwon Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Now a day, owing to high efficiency and easy speed control of brushless DC(BLDC) motor, the demand of BLDC motor that has high power and low noises are increasing. Especially demand of interior permanent magnet(IPM) BLOC with high efficiency and high power in electric motion vehicle is increasing. IPM BLDC motor has permanent magnets in the rotor. Because it has two different flux paths, magnetic reluctance differences are generated in d-axis and q-axis. As the result of the inductance differences that are generated by the saliency(magnetic reluctance differences) in the rotor, the motor has structure advantage that has the additional reluctance torque except a magnet torque and because magnet is situated inside the rotor, the mechanical structure is strong. Therefore IPM BLDC motor makes possible to have high speed and high power. This paper presents a design and characteristics analysis of IPM BLDC motor for electric vehicle. To design IPM BLDC motor, surface mounted permanent magnet(SPM) BLDC motor is used as the initial design model. According to the shape-ratio() of permanent magnet, the characteristic of IPM BLDC motor is analyzed by Finite element method (FEM). Characteristics analysis results of the designed motor are compared with the experimental results.

Reducing the Cogging toque of IPM type BLDC Motor according to the Flux barrier shape (IPM type BLDC 전동기의 자속장벽 설치에 따른 코깅 토크 저감)

  • Yang, Byoung-Yull;Yun, Keun-Young;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.67-69
    • /
    • 2004
  • This paper describes an approach to design a interior permanent magnet motor(IPM motor) for the reduction of cogging torque. The magnitude of the torque ripple and cogging torque in a interior permanent magnet motor(IPM motor) are generally dependent on several major factors: the shape of stator tooth tip, slot opening width, air gap length, the shape of barrier preventing flux leakage of magnets, magnet configuration and magnetization distribution or magnet poles. In this paper, the IPM BLDC motor is designed considering a saturated leakag flux between the barriers on the rotor for increasing the efficiency and decreasing the magnitude of the cogging torque. Analytical model is developed for the IPM BLDC motor with a concentrated winding stator. The results verifies that the proposed design approach is very efficient and effective in reducing the cogging torque and the torque ripple of the IPM BLDC motor to be used in an electric vehicle.

  • PDF

Reducing Cogging Torque in Interior Permanent Magnet type BLDC motor by Flux barriers in the rotor (회전자부의 자속장벽 설치를 통한 IPM type BLDC 전동기 코깅 토오크 저감에 대한 연구)

  • Yun, Keun-Young;Yang, Byoung-Yull;Rhyu, Se-Hyun;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.64-66
    • /
    • 2004
  • Several techniques have been adopted in motor design of interior permanent magnet (IPM) type brushless DC (BLDC) motor to minimize cogging torque. IPM type motor has better ability in the centralization of flux than surface-mounted permanent magnet (SPM) type BLDC motor. So, the structure of IPM type BLDC motor has high saliency ratios that produce additional torque. However, this structure has a significant cogging torque that generates both vibration and noise. This paper describes new technique of the flux barriers design for reduction of cogging torque of IPM type BLDC motor. To reduce the cogging torque, flux barriers are applied in the rotor. Changing the number of barrier, the cogging torque is analyzed by finite clement method(FEM).

  • PDF

Optimal Rotor Design of Interior Permanent Magnet Motor for High Torque Using Response Surface Methodology (반응표면론법을 이용한 Interior Permanent Magnet Motor의 회전자 최적설계)

  • Ban, Ji-Hyoung;Kim, Sung-Il;Lee, Ji-Young;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.123-125
    • /
    • 2005
  • The purpose of this paper is to optimize rotor shape of interior permanent magnet (IPM) motor for high torque. V-shaped permanent magnet arrangement is applied to obtain more torque than prototype IPM. The performance, based on finite element method, is evaluated as torque per rotor volume (TRV). In this paper, response surface methodology (RSM) is used to search optimal shape of the rotor. The usefulness of RSM in optimal design of IPM motor is verified by comparing TRV between prototype and optimized V-type.

  • PDF

Air-Barrier Width Prediction of Interior Permanent Magnet Motor for Electric Vehicle Considering Fatigue Failure by Centrifugal Force

  • Kim, Sung-Jin;Jung, Sang-Yong;Kim, Yong-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.952-957
    • /
    • 2015
  • Recently, the interior permanent magnet (IPM) motors for electric vehicle (EV) traction motor are being extensively researched because of its high energy density and high efficiency. The traction motor for EV requires high power and high efficiency at the wide driving region. Therefore, it is essential to fully consider the characteristics of the motor from low speed to high-speed driving regions. Especially, when the motor is driven at high speed, a significant centrifugal force is applied to the rotor. Thus, the rotor must be stably structured and be fully endured at the critical speed. In this paper, aims to examine the characteristics of the IPM motor by adjusting the width of air-barrier according to the permanent magnet position which is critical in designing an IPM motor for EV traction motors and to conduct a centrifugal force analysis for grasping mechanical safety.

Reducing Cogging Torque by Flux-Barriers in Interior Permanent Magnet BLDC Motor (회전자 자속장벽 설계에 의한 영구자석 매입형 BLDC 전동기 코깅 토오크 저감 연구)

  • Yun, Keun-Young;Yang, Byoung-Yull;Kwon, Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.491-497
    • /
    • 2006
  • For high efficiency and easy speed control of brushless DC (BLDC) motor, the demand of BLDC motor is increasing. Especially demand of interior permanent magnet (IPM) BLDC with high efficiency and high power in electric motion vehicle is increasing. However, IPM BLDC basically has a high cogging torque that results from the interaction of permanent magnet magnetomotive force (MMF) harmonics and air-gap permeance harmonics due to slotting. This cogging torque generates vibration and acoustic noises during the driving of motor. Thus reduction of the cogging torque has to be considered in IPM BLDC motor design by analytical methods. This paper proposes the cogging torque reduction method for IPM BLDC motor. For reduction of cogging torque of IPM BLDC motor, this paper describes new technique of the flux barriers design. The proposed method uses sinusoidal form of flux density to reduce the cogging torque. To make the sinusoidal air-gap flux density, flux barriers are applied in the rotor and flux barriers that installed in the rotor produce the sinusoidal form of flux density. Changing the number of flux barrier, the cogging torque is analyzed by finite element method. Also characteristics of designed model by the proposed method are analyzed by finite element method.

Assistant Model For Considering Slot-Opening Effect on No-load Air-gap Flux Density Distribution in Interior-type Permanent Magnet Motor (매입형 영구자석 전동기에서 무부하시 공극 자속밀도 분포에 대한 Slot-Opening Effect를 고려한 보조 모델)

  • Fang, Liang;Kim, Do-Jin;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.759-765
    • /
    • 2011
  • This paper proposes an effective assistant model for considering the stator slot-opening effect on air gap flux density distribution in conventional interior-type permanent magnet (IPM) motor. Different from the conventional slot-opening effect analysis in surface-type PM (SPM) motor, a composite effect of slot-opening uniquely existing in IPM motor, which additionally causes enhancement of air gap flux density due to magnet flux path distortion in iron core between the buried PM and rotor surface. This phenomenon is represented by a proposed assistant model, which simply deals with this additional effect by modifying magnetic pole-arc using an effective method. The validity of this proposed analytical model is applied to predict the air gap flux density distribution in an IPM motor model and confirmed by finite element method (FEM).

A Study on Slot-opening Effect in Interior Permanent Magnet Motor (매입형 영구자석 전동기의 Slot-opening Effect에 관한 연구)

  • Fang, Liang;Kim, Sung-Il;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1027-1028
    • /
    • 2007
  • In this paper, the variation of air-gap field intensity caused by the slot-opening in interior permanent magnet (IPM) motor is investigated, which is for predicting the instantaneous magnetic field more preciously in analytical method further. It is different with the approach of dealing the slot-opening effect on the air-gap field distribution with the "relative permeance" function in surface permanent magnet (SPM) motor. The prediction of the air-gap field in IPM motor is much more complex than SPM motor. In this study, an approximate estimation method is adopted based on analyzing the changing of flux path in both the IPM rotor part and stator part, and in additional an analytical function defined as "relative pole-arc" is built. The finite element method(FEM) is used for confirming the slot-opening effect on the field prediction.

  • PDF

Thermal Network Analysis of Interior Permanent Magnet Machine (매입형 영구자석 전동기의 열 등가 회로 해석)

  • Lim, Jae-Won;Seo, Jang-Ho;Lee, Sang-Yub;Jung, Hyun-Kyo
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.527-532
    • /
    • 2009
  • Recently, Interior Permanent Magnet Machine(IPM) is widely used for traction motor in the high speed train. Due to the high efficiency and high power density of the IPM, it has lots of heat sources such as iron loss and copper loss. These heat sources can cause the demagnetization of permanent magnet, losses in output power and even irreversible defect of the IPM. To prevent the power loss caused by heat sources, the accurate thermal analysis has to be carried out. For the thermal analysis of the IPM, the thermal network is designed for this traction motor. The thermal analysis has executed at rated speed operation. The result of thermal network analysis can be used for the IPM design process.

  • PDF

Sliding Mode Controller Design Using Virtual State and State Decoupling for IPM Motor (가상 상태와 상태 디커플링을 이용한 IPM전동기용 슬라이딩 모드 제어기의 설계)

  • Kim, Min-Chan;Park, Seung-Kyu;Yoon, Seong-Sik;Kwak, Gun-Pyong;Park, Young-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.514-521
    • /
    • 2009
  • The current control for Interior-mounted Permanent Magnet Motor(IPM Motor) is more complicate than Surface-mounted Permanent magnet Motor(SPM Motor) because of its torque characteristic depending on the reluctance. For high performance torque control, it requirs state decoupling between d-axis current and q-axis current dynamics. However the variation of the inductances, which couples the state dynamics of the currents, makes the state decoupling difficult. So some decoupling methods have developed to cope this variation and each current can be regulated independently. This paper proposes a novel approach for fully decoupling the states cross-coupling using sliding mode control with virtual state for IPM Motor. As a result, in spite of the parameter uncertainty and disturbance, the proposed sliding surface can have the dynamics of nominal system controlled by PI controller.