고성능 내장형 기기의 대중화 및 광대역 통신기술의 발달로 생성-관리되는 데이터가 증가하고 있다. 중복제거 기법은 중복된 저장 요청을 판별하여 유일한 데이터만을 저장함으로써 저장 공간을 절약하는 방법으로 폭증하는 데이터의 저장과 처리 시스템을 경제적으로 구축 할 수 있다. 본 연구는 입출력 크기 (IO Extent) 단위 기반 분할 방법을 사용한 CORE-Dedup을 제안한다. CORE-Dedup의 Extent 단위 분할은 접근한 Content가 보존하는 접근 단위의 속성을 활용 한다. 가상머신에서 IO 경향을 수집하고 고정 크기 분할과 새로운 Extent 분할 방법에 대해 중복제거 성능을 비교 평가하였다. 동일 크기 워크로드 경우 4 KB 고정 분할 대비 적은 색인 버퍼를 가지고 유사한 수준의 중복 비교를 성능을 얻을 수 있다. 특히 다수 유저의 유사 IO 중복 접근을 가정한 워크로드 경우에는 CORE-Dedup이 Extent 단위 분할의 넓은 워크로드 Coverage에 의해 고정 크기 분할을 사용한 동일 조건의 Inline-Dedup에 비해 1/10 수준 버퍼를 가지고도 유사 중복제거 성능을 얻었다. 10명 사용자의 동일 compile 입출력을 가정한 병합 워크로드에서 4 KB 고정 크기 분할에서는 14,500개 분할 색인에서 최대 60.4%의 중복 발견율을 얻었으나 Extent 분할에서는 1,700개 색인만으로 57.6%를 얻었다.
검사점 저장 기법을 사용하여 주기적으로 클러스터 노드들의 프로세스 수행 정보를 전역 저장 장치에 저장하는 분산 클러스터 시스템에서 결함 허용 성능을 유지하는 데 드는 비용을 줄이고 전체 프로세스의 수행 성능을 증가시키기 위해서는 검사점 정보를 저장할 때에 네트워크로 전달되는 부하를 각 노드에 최대한 적절하게 분산하여 데이터 저장 시간을 줄임으로써 검사점 정보를 저장하는 동안 전체 클러스터 시스템의 프로세스가 지연되는 시간을 줄이도록 하여야 한다. 이를 위하여 분산 RAID 기반의 단일 입출력 공간을 사용하는. 클러스터 시스템에서는 여러가지 검사점 저장 기법을 사용하며, 검사점 정보의 저장 기법에 따라서 저장 성능과 결함 회복 성능이 달라진다. 본 연구에서는 분할된 검사점 저장 기법을 개선하여 검사점 데이터를 분산 RAID 기반의 단일 입출력 공간에 저장할 때에 그룹별로 분할되는 분할 그룹 크기를 검사점 정보가 저장될 때의 네트워크의 트래픽에 따라서 동적으로 결정하여 네트워크를 통한 분산 RAID에 저장함으로써 네트워크 병목현상을 최소화하는 다중 분할된 검사점 저장 구조를 제안하였다. 제안된 구조의 성능을 분석하기 위하여 최대 512개의 가상 노드로 구성된 클러스터 시스템을 대상으로 하여 MPI 와 Linpack HPC 벤치마크를 통한 성능 평가를 수행하였으며, 성능 평가 결과는 검사점 정보의 크기와 클러스터의 크기가 증가할수록 제안된 기법이 검사점 정보의 저장과 결함 회복 능력에 대하여 기존의 검사점 저장 기법에 비하여 우수한 성능을 보인다.
컴퓨터 비전 분야의 의미론적 영상 분할(Semantic Image Segmentation) 기술은 이미지를 픽셀 단위로 분할 하여 클래스를 나누는 기술이다. 이 기술도 기계 학습을 이용한 방법으로 성능이 빠르게 향상되는 중이며, 픽셀 단위의 정보를 활용할 수 있는 높은 활용성이 주목받는 기술이다. 그러나 이 기술은 초기부터 최근까지도 계속 '세밀하지 못한 분할'에 대한 문제가 제기되어 왔다. 이 문제는 레이블 맵의 크기를 계속 늘리면서 발생한 문제이기 때문에, 자세한 에지 정보가 있는 원본 영상의 에지 맵을 이용해 레이블 맵을 수정하여 개선할 수 있을 것으로 예상할 수 있었다. 따라서 본 논문은 기존 방법대로 학습 기반의 의미론적 영상 분할을 유지하되, 그 결과인 레이블 맵을 원본 영상의 에지 맵 기반으로 수정하는 후처리 알고리즘을 제안한다. 기존의 방법에 알고리즘의 적용 한 뒤 전후의 정확도를 비교했을 때 평균적으로 약 1.74% 픽셀 정확도와 1.35%의 IoU(Intersection of Union) 정확도가 향상되었으며, 결과를 분석했을 때 성공적으로 본래 목표한 세밀한 분할 기능을 개선했음을 보였다.
잘피는 연안해역에 서식하는 해양수생관속식물로 해양생태계의 중요한 역할을 하고 있어, 주기적인 잘피 서식지의 모니터링이 이루어지고 있다. 최근 효율적인 잘피 서식지의 모니터링을 위해 고해상도의 영상 획득이 가능한 드론의 활용도가 높아지고 있다. 그리고 의미론적 분할에 있어 합성곱 신경망 기반의 딥러닝이 뛰어난 성능을 보임에 따라, 원격탐사 분야에 이를 적용한 연구가 활발하게 이루어지고 있다. 그러나 다양한 딥러닝 모델, 영상, 그리고 하이퍼파라미터에 의해 의미론적 분할의 정확도가 다르게 나타나고, 영상의 정규화와 타일과 배치 크기에서도 정형화되어 있지 않은 상태이다. 이에 따라 본 연구에서는 우수한 성능을 보여주는 딥러닝 모델을 이용하여 드론의 광학 영상에서 잘피 서식지를 분할하였다. 그리고 학습 자료의 정규화 및 타일의 크기를 중점으로 결과를 비교 및 분석하였다. 먼저 정규화와 타일, 배치 크기에 따른 결과 비교를 위해 흑백 영상을 만들고 흑백 영상을 Z-score 정규화 및 Min-Max 정규화 방법으로 변환한 영상을 사용하였다. 그리고 타일 크기를 특정 간격으로 증가시키면서 배치 크기는 메모리 크기를 최대한 사용할 수 있도록 하였다. 그 결과, Z-score 정규화가 적용된 영상이 다른 영상보다 IoU가 0.26 ~ 0.4 정도 높게 나타났다. 또한, 타일과 배치 크기에 따라 최대 0.09까지 차이가 나타나는 것을 확인하였다. 딥러닝을 이용한 의미론적 분할에 있어 정규화, 타일의 배치 크기의 변화에 따른 결과가 다르게 나타났다. 그러므로 실험을 통해 이들 요소에 대한 적합한 결정 과정이 있어야 함을 알 수 있었다.
최근 우리나라에서는 지진, 산불, 태풍, 홍수, 산사태 등의 자연재해가 빈번하게 발생하고 있다. 산불의 경우 10년 평균, 발생빈도, 피해면적, 피해금액은 2021년 기준으로 감소했지만, 2022년 3월 4일부터 13일까지 9일간 경북 울진과 강원 삼척 일대에서 발생했다. 산불은 삼림 2만ha를 불태우고 213시간 43분 만에 진화를 완료해 산림청이 관련 통계를 작성한 1986년 이후 '최장기 산불' 기록을 남겼다. 피해 규모도 커지고 있다. 본 논문에서는 Geofencing 기술을 적용한 LoRa 기반의 센서 네트워크 구축을 통해, 저렴한 비용으로 효율적인 센서 네트워크 구축이 가능함을 확인하였으며 산불 등의 재해 관리에 대한 실효성 검증을 하였다. GPS와 자이로센서, 연소탐지 센서를 통해 변화량을 감지하고, 정확한 Geofencing Cell의 유효성 크기를 정의하였다. Node와 Node, Node와 Server사이의 효율적인 데이터 통신을 위해 LoRa Payload Frame Structure를 센서정보의 크기에 맞게 유동적 크기를 갖도록 설계하여 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.