• Title/Summary/Keyword: INTERTIDAL ZONE

Search Result 317, Processing Time 0.021 seconds

Sexual Maturation of the Turban Shell, Lunella coronata coreensis (Gastropoda: Turbinidae), on the West Coast of Korea (눈알고둥 (Lunella coronata coreensis)의 성 성숙)

  • LEE Ju Ha
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.6
    • /
    • pp.533-540
    • /
    • 2000
  • Gonadal development, gametogenesis, reproductive cycle, gonad index, flesh weight rate, and first sexual maturity of the turban shell, Lunella coronata coreensis were investigated by histological observation. The materials used were collected monthly from the rocky intertidal zone of Daehang-ri, Buan-gun, Jeollabuk-do, on the west coast of Korea, from July 1998 to June 1999. Sex of L coronata coreensis was separate. The gonad was widely located in the spirals of the visceral mass buried in the digestive gland. The ovary and testis were composed of a number of oogenic follicles and speymatogenic follicles, respectively. Monthly variations in the gonad index increased from March ($23.86{\pm}3.73$) when the water temperature increased and reached the maximun in July ($49.76{\pm}6.47$). And then, the gonad index sharply decreased in September ($15.58{\pm}2.33$). The flesh weight rate ranged from $25.2{\%}$ to $32.3{\%}$, and its variation showed a similar pattern to the gonad index. Individuals $<5.9 mm$ in shell height could not take part in reproduction in both sexes. Percentages of first sexual maturity of female and male specimens ranging from $7.0{\~}7.9 mm$ in shell heights were $84.6{\%}\;and\;91.7{\%}$, respectively, and $100{\%}$ in those over 8.0 mm in shell height in both sexes took part in reproduction. By studying the monthly changes of the morphological features and sizes of germ cells during gametogenesis in the gonad, the reproductive cycle of this species could be devided into five successive stages: early active (December to April), late active (January to July), ripe (May to August), spawning (July to September), and recovery (September to March). The spawning period of this species was once a year between July and September, and the main spawning occurred in July when the seawater temperature reached above $24.8^{\circ}C$. The fully ripe eggs were $150{\~}160\;{\mu}m$ in diameter.

  • PDF

Trace Metals (Mn, Zn, Cd, Pb) in the Shell of the Marine Gastropod, Littorina brevicula on Coastal Area, Korea (전국 연안의 총알고둥(Littorina brevicula: Gastropod) 패각 중 금속 원소(Mn, Zn, Cd, Pb)의 분포 특성)

  • Lim, Chae-Ryeol;Kang, Seong-Gil;Lee, Chang-Bok;Koh, Chul-Hwan;Choi, Man-Sik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.119-130
    • /
    • 2000
  • Mn, Zn, Cd and Pb in shells of Littorina brevicula, which lives ubiquitously in intertidal zone around the Korean coast, were analyzed to determine the relationship between metal levels in its shell, ambient seawater and its tissue. Periwinkles and seawater samples were collected from 38 sites along the Korean coast in January 1997. Mn contents in shells of this organism show the range of 7.0 ${\mu}g$/g-211 ${\mu}g$/g (mean 59 ${\mu}g$/g) and are the lowest in northern east coast but high in western south and west coast. Close relationship between Mn contents in shells and metal levels both in seawater and in tissues indicates that Mn in shell might be incorporated from ambient seawater by a biological process. Although the contents of Cd in shells did not reflect the distribution of total Cd in seawaters and they were very low compared to those in tissues, they followed spatial gradient of contents in tissues. However, the spatial distribution of Zn contents in shells accords neither ambient seawater nor tissues, while it is negatively correlated with the contents of Na in shells. This fact suggests that Zn contents might be controlled by salinity of ambient seawater. On the contrary, Zn contents in highly polluted sites near Onsan Bay show generally higher levels than other sites. The contents of Pb show the range of 0.1 ${\mu}g$/g-17.5 ${\mu}g$/g (mean 1.01 ${\mu}g$/g) and the highest in sites near Onsan Bay. Although the spatial distribution of shell Pb does not follow those of tissue, Pb in shells of Littorina brevicula may be controlled both by shell secretion process and by Pb levels in ambient seawater because the contents of Pb in the shell decrease steadily with growth and vary with levels of Pb in ambient seawater.

  • PDF

The Cross-Sectional Characteristic and Spring-Neap Variation of Residual Current and Net Volume Transport at the Yeomha Channel (경기만 염하수로에서의 잔차류 및 수송량의 대조-소조 변동과 단면 특성)

  • Lee, Dong Hwan;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.5
    • /
    • pp.217-227
    • /
    • 2017
  • The object of this study is to estimate the net volume transport and the residual flow that changed by space and time at southern part of Yeomha channel, Gyeonggi Bay. The cross-section observation was conducted at the mid-part (Line2) and the southern end (Line1) of Yeomha channel for 13 hours during neap and spring-tides, respectively. The Lagrange flux is calculated as the sum of Eulerian flux and Stokes drift, and the residual flow is calculated by using least square method. It is necessary to unify the spatial area of the observed cross-section and average time during the tidal cycle. In order to unify the cross-sectional area containing such a large vertical tidal variation, it was necessary to convert into sigma coordinate system by horizontally and vertically for every hour. The converted sigma coordinate system is estimated to be 3~5% error when compared with the z-level coordinate system which shows that there is no problem for analyzing the data. As a result, the cross-sectional residual flow shows a southward flow pattern in both spring and neap tides at Line2, and also have characteristic of the spatial residual flow fluctuation: it northwards in the main line direction and southwards at the end of both side of the waterway. It was confirmed that the residual flow characteristics at Line2 were changed by the net pressure due to the sea level difference. The analysis of the net volume transport showed that it tends to southwards at $576m^3s^{-1}$, $67m^3s^{-1}$ in each spring tide and neap tide at Line2. On the other hand, in the control Line1, it has tendency to northwards at $359m^3s^{-1}$ and $248m^3s^{-1}$. Based on the difference between the two observation lines, it is estimated that net volume transport will be out flow about $935m^3s^{-1}$ at spring tide stage and about $315m^3s^{-1}$ at neap tide stage as the intertidal zone between Yeongjong Island and Ganghwa Island. In other words, the difference of pressure gradient and Stokes drift during spring and neap tide is main causes of variation for residual current and net volume transport.

Gonadal Development and Reproductive Cycle of the Sand Snail, Umbonium thomasi (서해비단고둥 (Umbonium thomasi)의 생식소 발달과 생식주기)

  • Lee Ju Ha
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.6
    • /
    • pp.702-708
    • /
    • 2002
  • Although Umboniunm thomasi is one of marine mollusc (Archaeogastropoda: Trochidae) inhabiting the sands in the intertidal zone of the west coast of Korea, aspects of its reproductive biology are still not too well known. Reproductive cycle, gametogenesis, and first sexual maturity of U. thomasi collected at the west coast of Buan-gun, Jeollabuk-do, Korea were investigated monthly from January to December 1999. U. thomasi was dioecious, and an oviparous. The gonad was placed in the rear of the flesh part in the spiral shell. The external colors of the ripe ovary and testis appeared to be green and milk-white or yellowish white, respectively. Meat weigh rate peaked in July ($37.5\%$). And then the value sharply decreased in September ($28.3\%$), thereafter, gradually increased in November ($31.7\%$). Fully ripe oocytes were approximately 100$\~$110 $/mu$m in diameter, and their cytoplasm contained a great number of yolk Branules. Based on the monthly changes of the Bonadal development, gametogenesis, and meat weight rate, the reproductive cycle of U. thomasi could be devided into five successive stages: early active (November to April), late active (February to May), ripe (April to August), spawning (July to October), and recovery (September to February). Gonadal development and spawning were closely related to the seawater temperature, the main spawning occurred in September when the temperature reached above 24.2$^{\circ}C$. Individuals of 4.4 mm and less in shell height could not take part in reproduction in both sexes. Percentages of first sexual maturity of female and male shells ranging from 5.5 to 6.4 mm were $55.0\%$ and $61.9\%$, respectively, and $100\%$ of those over 7.5 mm in shell heights in both sexes participated in the reproduction.

Structural and functional characteristics of rock-boring clam Barnea manilensis (암석을 천공하는 돌맛조개(Barnea manilensis)의 구조 및 기능)

  • Ji Yeong Kim;Yun Jeon Ahn;Tae Jin Kim;Seung Min Won;Seung Won Lee;Jongwon Song;Jeongeun Bak
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.413-422
    • /
    • 2022
  • Barnea manilensis is a bivalve which bores soft rocks, such as, limestone or mudstone in the low intertidal zone. They make burrows which have narrow entrances and wide interiors and live in these burrows for a lifetime. In this study, the morphology and the microstructure of the valve of rock-boring clam B. manilensis were observed using a stereoscopic microscope and FE-SEM, respectively. The chemical composition of specific part of the valve was assessed by energy dispersive X-ray spectroscopy (EDS) analysis. 3D modeling and structural dynamic analysis were used to simulate the boring behavior of B. manilensis. Microscopy results showed that the valve was asymmetric with plow-like spikes which were located on the anterior surface of the valve and were distributed in a specific direction. The anterior parts of the valve were thicker than the posterior parts. EDS results indicated that the valve mainly consisted of calcium carbonate, while metal elements, such as, Al, Si, Mn, Fe, and Mg were detected on the outer surface of the anterior spikes. It was assumed that the metal elements increased the strength of the valve, thus helping the B. manilensis to bore sediment. The simulation showed that spikes located on the anterior part of the valve received a load at all angles. It was suggested that the anterior part of the shell received the load while drilling rocks. The boring mechanism using the amorphous valve of B. manilensis is expected to be used as basic data to devise an efficient drilling mechanism.

Bathymetric and Topographic Changes of the Gomso-Bay Tidal Flat, West Coast of the Korean Peninsula (한반도 서해안 곰소만 갯벌의 수심 및 지형 변화)

  • Jin Ho Chang;Yong-Gil Kim;Myong Sun Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.552-561
    • /
    • 2023
  • The seafloor topography of Gomso Bay on the west coast of Korea was investigated using subtidal bathymetry and tidal-flat altimetry. Gomso Bay consists of 80% tidal flats and 20% subtidal zone, and is divided into an outer bay and an inner bay by the Jujincheon esturary channel. The outer bay tidal flat, has few tidal channels, has a concave topographic profile, and is characterized by the development of chenier and intertidal sand bars, giving it the appearance of gently sloping, dissipative beaches. The inner bay tidal flat has wide upper and middle tidal flats with a well-developed tidal channel system without cheniers. Moreover, the topographical cross-section between these tidal channels is convex upward, and shows the characteristics of a depositional environment greatly influenced by tidal channels and tidal action. An analysis of the horizontal movement of the tidal flat environment over the past 37 years investigating changes in the iso-depth lines in the Gomso-Bay tidal flat between 1981 and 2018 revealed that the Gomso-Bay tidal flat retreated gradually landward. As a result of analyzing the erosion and sedimentation characteristics of Gomso Bay, assuming that most of the water depth changes were due to changes in the elevation of the sea floor and sea level, an average of 1 cm (0 mm/y) of sediment was eroded in the outer bay over the past 37 years (1981-2018), In the inner bay, an average of 50 cm (14 mm/y) was deposited. Notably, the high tidal flats of the outer bay were largely eroded. Monitoring photographs of the coast showed that most of the erosion of the high tidal flats in the outer bay occurred in a short period around 1999 (probably 1997-2002), and that the erosion resulted from the erosion of sand dunes and high-tide beaches caused by temporarily greatly raised high tide levels and storms.

Distribution Characteristics of Land and River Aggregate Resources in Yeongam Area by Deposition Period (영암지역 육상 및 하천 골재의 퇴적 시기별 분포 특성)

  • Jin Cheul Kim;Sei Sun Hong;Jin-Young Lee;Ju Yong Kim
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.243-251
    • /
    • 2024
  • In this study, a surface geological survey was first conducted to investigate aggregate resources in the Yeongam area of Jeollanam-do, and a drilling survey was conducted in the lower part of the surface, which was difficult to identify through a surface geological survey, to determine the spatial distribution of aggregates. Drilling sites were selected considering the topographical development and Quaternary alluvium characteristics of the study area, and river aggregate drilling surveys were conducted at a total of 5 points and land aggregate drilling surveys were conducted at a total of 28 points. Borehole core sediments were classified into seven sedimentary units to determine whether they could be used as aggregates, and optically stimulated luminescence dating was performed on representative boreholes to measure the depositional period for each sedimentary unit. As a result of the study, most of the Yeongam area had a very wide river basin, so it was estimated that there would be a large amount of aggregate, but the amount of aggregate was evaluated to be very small compared to other cities and counties. Most of the unconsolidated sedimentary layers in the Yeongam area are composed of blue-grey marine clay with a vertical thickness of more than 10 m. The sand-gravel layer corresponding to the aggregate section is distributed in the lower part of the marine clay, thinly covering the bedrock weathering zone. This is because the amount of aggregates themselves is small and most of the aggregates are distributed at a depth of 10 m below the surface, which is currently difficult to develop, so the possibility of developing aggregates is evaluated to be very low. As a result of dating, it can be seen that the blue-grey marine clay layer is an intertidal sedimentary layer formed as the sea level rose rapidly about 10,000 years ago. The deposition process continued from 10,000 years ago to the present, and as a result, a very thick clay layer was deposited. This clay layer was formed very dominantly for about 6,000 to 8,000 years, and the sand-gravel layer in the section where aggregates deposited in the Pleistocene period can exist was measured to have been deposited at about 13.0 to 19.0 ka, and about 50 ka, showing that it was deposited as paleo-fluvial deposits before the marine transgression process.