• Title/Summary/Keyword: INS-1E cells

Search Result 11, Processing Time 0.02 seconds

THE CORRELATION BETWEEN AMYLIN AND INSULIN BY TREATMENT WITH 2-DEOXY-D-GLUCOSE AND/OR MANNOSE IN RAT INSULINOMA INS-1E CELLS

  • H.S. KIM;S.S. JOO;Y.-M. YOO
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.72 no.4
    • /
    • pp.517-528
    • /
    • 2021
  • Aamylin or islet amyloid polypeptide (IAPP) is a peptide synthesized and secreted with insulin by the pancreatic β-cells. A role for amylin in the pathogenesis of type 2 diabetes (T2D) by causing insulin resistance or inhibiting insulin synthesis and secretion has been suggested by in vitro and in vivo studies. These studies are consistent with the effect of endogenous amylin on pancreatic β-cells to modulate and/or restrain insulin secretion. Here, we reported the correlation between amylin and insulin in rat insulinoma inS-1e cells by treating 2-deoxy-ᴰ-glucose (2-DG) and/or mannose. Cell viability was not affected by 24 h treatment with 2-DG and/or mannose, but it was significantly decreased by 48 h treatment with 5 and 10 mm 2-DG. in the 24 h treatment, the synthesis of insulin in the cells and the secretion of insulin into the media showed a significant inverse association. in the 48-h treatment, amylin synthesis vs. the secretion and insulin synthesis vs. the secretion showed a significant inverse relation. The synthesis of amylin vs. insulin and the secretion of amylin vs. insulin showed a significant inverse relationship. The p-ERK, antioxidant enzymes (Cu/Zn-superoxide dismutase (SOD), Mn-SOD, and catalase), and endoplasmic reticulum (ER) stress markers (cleaved caspase-12, CHOP, p-SAPK/JNK, and BiP/GRP78) were significantly increased or decreased by the 24 h and 48 h treatments. These data suggest the relative correlation to the synthesis of amylin by cells vs. the secretion into the media, the synthesis of amylin vs. insulin, and the secretion of amylin vs. insulin under 2-DG and/or mannose in rat insulinoma INS-1E cells. Therefore, these results can provide primary data for the hypothesis that the amylin-insulin relationships may be involved with the human amylin toxicity in pancreatic beta cells.

Effects of Conjugated Linoleic Acid and Stearic Acid on Apoptosis of the INS-1 β-cells and Pancreatic Islets Isolated from Zucker Obese (fa/fa) Rats

  • Jang, I.S.;Hwang, D.Y.;Lee, J.E.;Kim, Y.K.;Kang, T.S.;Hwang, J.H.;Lim, C.H.;Chae, K.R.;Jeong, J.H.;Cho, J.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.7
    • /
    • pp.1060-1065
    • /
    • 2003
  • To determine whether dietary fatty acids affect pancreatic $\beta$-cell function, the INS-1 $\beta$-cells and the pancreatic islets isolated from Zucker obese (fa/fa) rats were cultured with stearic acid and conjugated linoleic acid (CLA). As a result, DNA fragmentation laddering was substantially decreased in the INS-1 $\beta$-cells and the isolated pancreatic islets cultured with 2 mM CLA compared to those cultured with stearic acid. To investigate the mechanism by which CLA alleviates cell apoptosis under DNA fragmentation assay, we examined mRNA expressions of apoptosis-related proteins including Bax and Bcl-2 associated with cell death agonist and antagonist, respectively, in both INS-1 cells and islets cultured with 2 mM fatty acids. Bax mRNA expression was not altered by either stearic acid or CLA, whereas Bcl-2 mRNA expression was enhanced by CLA when compared to the stearic acid cultures. However, there were no changes in cell apoptosis and apoptotic-regulating gene products in either INS-1 cells or isolated islets treated with or without 2 mM CLA. It is concluded that CLA maintains $\beta$-cell viability via increased Bcl-2 expression compared to the stearic acid cultures, which may help to alleviate, at least somewhat, the onset of NIDDM in the physiological status. More detailed study is still needed to elucidate the effect of CLA on the prevention of fatty acid-induced $\beta$-cell apoptosis.

Defective Mitochondrial Function and Motility Due to Mitofusin 1 Overexpression in Insulin Secreting Cells

  • Park, Kyu-Sang;Wiederkehr, Andreas;Wollheim, Claes B.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.71-77
    • /
    • 2012
  • Mitochondrial dynamics and distribution is critical for their role in bioenergetics and cell survival. We investigated the consequence of altered fission/fusion on mitochondrial function and motility in INS-1E rat clonal ${\beta}$-cells. Adenoviruses were used to induce doxycycline-dependent expression of wild type (WT-Mfn1) or a dominant negative mitofusin 1 mutant (DN-Mfn1). Mitochondrial morphology and motility were analyzed by monitoring mitochondrially-targeted red fluorescent protein. Adenovirus-driven overexpression of WT-Mfn1 elicited severe aggregation of mitochondria, preventing them from reaching peripheral near plasma membrane areas of the cell. Overexpression of DN-Mfn1 resulted in fragmented mitochondria with widespread cytosolic distribution. WT-Mfn1 overexpression impaired mitochondrial function as glucose- and oligomycin-induced mitochondrial hyperpolarization were markedly reduced. Viability of the INS-1E cells, however, was not affected. Mitochondrial motility was significantly reduced in WT-Mfn1 overexpressing cells. Conversely, fragmented mitochondria in DN-Mfn1 overexpressing cells showed more vigorous movement than mitochondria in control cells. Movement of these mitochondria was also less microtubule-dependent. These results suggest that Mfn1-induced hyperfusion leads to mitochondrial dysfunction and hypomotility, which may explain impaired metabolism-secretion coupling in insulin-releasing cells overexpressing Mfn1.

Involvement of Estrogen Receptor-α in the Activation of Nrf2-Antioxidative Signaling Pathways by Silibinin in Pancreatic β-Cells

  • Chu, Chun;Gao, Xiang;Li, Xiang;Zhang, Xiaoying;Ma, Ruixin;Jia, Ying;Li, Dahong;Wang, Dongkai;Xu, Fanxing
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.163-171
    • /
    • 2020
  • Silibinin exhibits antidiabetic potential by preserving the mass and function of pancreatic β-cells through up-regulation of estrogen receptor-α (ERα) expression. However, the underlying protective mechanism of silibinin in pancreatic β-cells is still unclear. In the current study, we sought to determine whether ERα acts as the target of silibinin for the modulation of antioxidative response in pancreatic β-cells under high glucose and high fat conditions. Our in vivo study revealed that a 4-week oral administration of silibinin (100 mg/kg/day) decreased fasting blood glucose with a concurrent increase in levels of serum insulin in high-fat diet/streptozotocin-induced type 2 diabetic rats. Moreover, expression of ERα, NF-E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in pancreatic β-cells in pancreatic islets was increased by silibinin treatment. Accordingly, silibinin (10 μM) elevated viability, insulin biosynthesis, and insulin secretion of high glucose/palmitate-treated INS-1 cells accompanied by increased expression of ERα, Nrf2, and HO-1 as well as decreased reactive oxygen species production in vitro. Treatment using an ERα antagonist (MPP) in INS-1 cells or silencing ERα expression in INS-1 and NIT-1 cells with siRNA abolished the protective effects of silibinin. Our study suggests that silibinin activates the Nrf2-antioxidative pathways in pancreatic β-cells through regulation of ERα expression.

Plant Inositol Signaling - Biochemical Study of Phospholipase C and D-myo-inositol -1,4,5-trisphosphate receptor

  • Martinec, Jan;Feltl, Tomas;Nokhrina, Katerina;Zazimalova, Eva;Machackova, Ivana
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.375-377
    • /
    • 2000
  • It is now generally accepted that a phosphoinositide cycle is involved in the transduction of a variety of signals in plant cells. In animal cells, the hydrolysis of phosphatidyl-4,5-bisphosphate catalysed by phosphatidylinositol - specific phospholipase C yields to D-myo-inositol - 1,4,5-trisphosphate and diacylglycerol, which are well known second messengers. The binding of InsP$_3$to a receptor located on the endoplasmic reticulum triggers a calcium release from the endoplasmic reticulum. We have detected and partially characterised key components of phosphoinositide signaling. First, tobacco microsomal fraction and plasma membrane PI-PLC. Consecutively, using a radioligand binding assay we have identified a $Ca^{2+}$ -dependent high affinity InsP$_3$binding site in microsomal membrane fraction vesicle preparation and then we have measured inositol-1,4,5-trisphosphate induced calcium release from tobacco microsomal fraction. These findings suggest that phosphoinositide signaling system is present and operates in the tobacco suspension culture.e.

  • PDF

Genetic Variations in Six Candidate Genes for Insulin Resistance in Korean Essential Hypertensives

  • Bae, Joon-Seol;Kang, Byung-Yong;Kim, Ki-Tae;Shin, Jung-Hee;Lee, Chung-Choo
    • Animal cells and systems
    • /
    • v.5 no.4
    • /
    • pp.341-346
    • /
    • 2001
  • Hypertension is a complex disease with strong genetic influences. Essential hypertension has been shown to be associated with insulin resistance. To clarify the genetic basis of insulin resistance in Hypertension, case-control association studies were performed to examine candidate genes for insulin resistance in hypertension. Polymorphisms investigated were the BstO I polymorphism of the $\beta$3-adrenergic receptor (ADRB3) gene, the Xba I Polymorphism of the glycogen synthase (GSY) gene, the Dde I polymorphism of the protein phosphatase 1 G subuit (PP1G) gene, the BstE II polymorphism of the glucagon receptor (GCG-R) gene, the Pst 1 polymorphism of the insulin (INS) gene and the Acc I polymorphism of the glucokinase (GCK) gene. No significant differences were observed in the distribution of alleles and genotypes of the ADRB3, GSY PP1G, GCG-R, INS, and GCK genes between hypertensive and normotensive groups. Although the frequencies in each of these polymorphisms were not significantly different between essential hypertensive and normotensive individuals, our results may provide additional information for linkage analysis and associative studies of disorders in carbohydrate metabolism or in cardiovascular disease.

  • PDF

Involvement of Ca2+/Calmodulin Kinase II (CaMK II) in Genistein-Induced Potentiation of Leucine/Glutamine-Stimulated Insulin Secretion

  • Lee, Soo-Jin;Kim, Hyo-Eun;Choi, Sung-E;Shin, Ha-Chul;Kwag, Won-Jae;Lee, Byung-Kyu;Cho, Ki-Woong;Kang, Yup
    • Molecules and Cells
    • /
    • v.28 no.3
    • /
    • pp.167-174
    • /
    • 2009
  • Genistein has been reported to potentiate glucose-stimulated insulin secretion (GSIS). Inhibitory activity on tyrosine kinase or activation of protein kinase A (PKA) was shown to play a role in the genistein-induced potentiation effect on GSIS. The aim of the present study was to elucidate the mechanism of genistein-induced potentiation of insulin secretion. Genistein augmented insulin secretion in INS-1 cells stimulated by various energygenerating nutrients such as glucose, pyruvate, or leucine/glutamine (Leu/Gln), but not the secretion stimulated by depolarizing agents such as KCl and tolbutamide, or $Ca^{2+}$ channel opener Bay K8644. Genistein at a concentration of $50{\mu}M$ showed a maximum potentiation effect on Leu/Gln-stimulated insulin secretion, but this was not sufficient to inhibit the activity of tyrosine kinase. Inhibitor studies as well as immunoblotting analysis demonstrated that activation of PKA was little involved in genistein-induced potentiation of Leu/Gln-stimulated insulin secretion. On the other hand, all the inhibitors of $Ca^{2+}$/calmodulin kinase II tested, significantly diminished genistein-induced potentiation. Genistein also elevated the levels of $[Ca^{2+}]_i$ and phospho-CaMK II. Furthermore, genistein augmented Leu/Gln-stimulated insulin secretion in CaMK II-overexpressing INS-1 cells. These data suggest that the activation of CaMK II played a role in genistein-induced potentiation of insulin secretion.

Fumonisin $B_1$-induced Alteration of Sphingolipid Metabolism in $LLC-PK_1$ Cells ($LLC-PK_1$ 세포에서의 퓨모너신 $B_1$에 의해 유도된 스핑고리피드 대사)

  • Yoo, Hwan-Soo;Yun, Yeo-Pyo
    • YAKHAK HOEJI
    • /
    • v.41 no.6
    • /
    • pp.789-796
    • /
    • 1997
  • The purpose of this study was to determine the effect of sulfinpyrazone on fumonisin $B_1$-induced elevation of free sphingoid bases in LLC-$PK_1$ cells. Fumonis ins are a family of mycotoxins produced by the fungi Fusarium moniliforme which is common contaminant in corn. Fumonisins are also potent inhibiors of sphingosine and sphinganine N-acyltransferases (ceramide synthases), key enzymes in sphingolipid metabolism resulting in the elevation of free sphinganine. The cytosolic concentration of fumonisin B1 was known to be closely proportional to the elevation of free sphinganine in LLC-PK1 cells [Yoo, H.-S., Norred, W.P., Wang, E., Merrill, A.H., Jr., and Riley, R.T. (1992) Toxicol. Appl.Pharmacol. 114. 9-15]. Sulfinpyrazone, an anion transport inhibitor, reduced the elevated level of free sphinganine resulting from fumonisin B1 inhibition of de novo sphingolipid biosynthesis. Fumonisin B1 at a concentration of 20${\mu}$M showed approximately 120pmol/$10^6$ cells relative to 3-10pmol/$10^6$ cells in control cultures, and sulfinpyrazone at a concentration of 200${\mu}$M partially reversed the increased level of free sphinganine induced by fumonisin $B_1$ down to normal level after exposure to fumonisin $B_1$ for 8 to 24hr. However, the reduced effect of sulfinpyrazone on the fumonisin $B_1$-induced elevation of intracellular sphinganine was not shown after 24hr. Fumonisin $B_1$ exposure to LLC-PK1 cells for 36 and 48hr showed approximately 74 and 80pmol per $10^6$ cells relative to 82 and 76pmol,respectively, in fumonisin $B_1$ plus sulfinpyrazone-treated cultures. Sulfinpyrazone-induced less elevation of free sphinganine in confluent cells after exposure to fumonisin $B_1$ suggested that either sulfinpyrazone may block the availability of fumonisin $B_1$ to cells or act on the fumonisin $B_1$ interaction with ceramide synthase.

  • PDF

Induction of insulin receptor substrate-2 expression by Fc fusion to exendin-4 overexpressed in E. coli: a potential long-acting glucagon-like peptide-1 mimetic

  • Kim, Jae-Woo;Kim, Kyu-Tae;Ahn, You-Jin;Jeong, Hee-Jeong;Jeong, Hyeong-Yong;Ryu, Seung-Hyup;Lee, Seung-Yeon;Lee, Chang-Woo;Chung, Hye-Shin;Jang, Sei-Heon
    • BMB Reports
    • /
    • v.43 no.2
    • /
    • pp.146-149
    • /
    • 2010
  • Exendin-4 (Ex-4), a peptide secreted from the salivary glands of the Gila monster lizard, can increase pancreatic $\beta$-cell growth and insulin secretion by activating glucagon-like peptide-1 receptor. In this study, we expressed a fusion protein consisting of exendin-4 and the human immunoglobulin heavy chain (Ex-4/IgG-Fc) in E. coli and explored its potential therapeutic use for the treatment of insulin-resistant type 2 diabetes. Here, we show that the Ex-4/IgG-Fc fusion protein induces expression of insulin receptor substrate-2 in rat insulinoma INS-1 cells. Our findings therefore suggest that Ex-4/IgG-Fc overexpressed in E. coli could be used as a potential, long-acting glucagon-like peptide-1 mimetic.

Identification of Novel Mutations In Adenosine Deaminase Gene In Korean Leukemia Patients (한국인 백혈병 환자에서 아데노신 디아미나제 유전자의 새로운 변이의 확인)

  • Park, Ki-Ho
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.453-456
    • /
    • 2010
  • Leukemia is the abnormal increase of hematopoietic progenitor cells in tissues, resulting in anemia, increased susceptibility to infection and impaired blood clotting. The adenosine deaminase (ADA) gene is an important druggable target for the treatment of leukemia patients. Genetic and molecular analyses were performed to determine the effects of ADA gene mutations in 20 leukemia patients in the Korean population. To analyze the relationship between genotype and phenotype, the ADA genomic DNAs - including 1,092 bp of 12 exons and partial intron sequences flanking each exon - were sequenced and compared. In this study, the known mutations in other diseases, more than 50 mutations already reported in patients with severe combined immunodeficiency disease (SCID) and autism, were not found, but two novel mutations in leukemia patients were discovered. They include one nonsense mutation (A>C at nt position 478, F101F) and one missense mutation (G>A at nt position 778, E260K). One missense mutation (G>A at nt position 22, D8Y) was also detected in 20 normal control patients (allelic frequency of 7.5%). Interestingly, subjects in the Korean population retained 2 bp insertion at the intron 6 (IVS6-52insGC), something that has never been shown in other populations. The genetic study to find out the correlation between the mutant alleles and leukemia patients revealed no association statistically (p>0.05). The mutation found in leukemia needs further study to determine its possibility as a molecular marker for the diagnosis of leukemia.