• 제목/요약/키워드: INRIA Person Data Set

검색결과 2건 처리시간 0.02초

CNN의 깊은 특징과 전이학습을 사용한 보행자 분류 (Pedestrian Classification using CNN's Deep Features and Transfer Learning)

  • 정소영;정민교
    • 인터넷정보학회논문지
    • /
    • 제20권4호
    • /
    • pp.91-102
    • /
    • 2019
  • 자율주행 시스템에서, 카메라에 포착된 영상을 통하여 보행자를 분류하는 기능은 보행자 안전을 위하여 매우 중요하다. 기존에는 HOG(Histogram of Oriented Gradients)나 SIFT(Scale-Invariant Feature Transform) 등으로 보행자의 특징을 추출한 후 SVM(Support Vector Machine)으로 분류하는 기술을 사용했었으나, 보행자 특징을 위와 같이 수동(handcrafted)으로 추출하는 것은 많은 한계점을 가지고 있다. 따라서 본 논문에서는 CNN(Convolutional Neural Network)의 깊은 특징(deep features)과 전이학습(transfer learning)을 사용하여 보행자를 안정적이고 효과적으로 분류하는 방법을 제시한다. 본 논문은 2가지 대표적인 전이학습 기법인 고정특징추출(fixed feature extractor) 기법과 미세조정(fine-tuning) 기법을 모두 사용하여 실험하였고, 특히 미세조정 기법에서는 3가지 다른 크기로 레이어를 전이구간과 비전이구간으로 구분한 후, 비전이구간에 속한 레이어들에 대해서만 가중치를 조정하는 설정(M-Fine: Modified Fine-tuning)을 새롭게 추가하였다. 5가지 CNN모델(VGGNet, DenseNet, Inception V3, Xception, MobileNet)과 INRIA Person데이터 세트로 실험한 결과, HOG나 SIFT 같은 수동적인 특징보다 CNN의 깊은 특징이 더 좋은 성능을 보여주었고, Xception의 정확도(임계치 = 0.5)가 99.61%로 가장 높았다. Xception과 유사한 성능을 내면서도 80% 적은 파라메터를 학습한 MobileNet이 효율성 측면에서는 가장 뛰어났다. 그리고 3가지 전이학습 기법중 미세조정 기법의 성능이 가장 우수하였고, M-Fine 기법의 성능은 미세조정 기법과 대등하거나 조금 낮았지만 고정특징추출 기법보다는 높았다.

PCA와 HOG특징을 이용한 최적의 pRBFNNs 패턴분류기 기반 보행자 검출 시스템의 설계 (Design of Pedestrian Detection System Based on Optimized pRBFNNs Pattern Classifier Using HOG Features and PCA)

  • 임명호;박찬준;오성권;김진율
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1345-1346
    • /
    • 2015
  • 본 논문에서는 보행자 및 배경 이미지로부터 HOG-PCA 특징을 추출하고 다항식 기반 RBFNNs(Radial Basis Function Neural Network) 패턴분류기과 최적화 알고리즘을 이용하여 보행자를 검출하는 시스템 설계를 제안한다. 입력 영상으로부터 보행자를 검출하기 위해 전처리 과정에서 HOG(Histogram of oriented gradient) 알고리즘을 통해 특징을 추출한다. 추출된 특징은 고차원이므로 패턴분류기 분류 시 많은 연산과 처리속도가 따른다. 이를 개선하고자 PCA (Principal Components Analysis)을 사용하여 저차원으로의 차원 축소한다. 본 논문에서 제안하는 분류기는 pRBFNNs 패턴분류기의 효율적인 학습을 위해 최적화 알고리즘인 PSO(Particle Swarm Optimization)을 사용하여 구조 및 파라미터를 최적화시켜 모델의 성능을 향상시킨다. 사용된 데이터로는 보행자 검출에 널리 사용되는 INRIA2005_person data set에서 보행자와 배경 영상을 각각 1200장을 학습 데이터, 검증 데이터로 구성하여 분류기를 설계하고 테스트 이미지를 설계된 최적의 분류기를 이용하여 보행자를 검출하고 검출률을 확인한다.

  • PDF