• Title/Summary/Keyword: INPUT IMPEDANCE

Search Result 652, Processing Time 0.032 seconds

An Analysis and Design of Wideband Microstrip Rotman Lens by Contour Integral and Segmentation Method (경계적분법과 세그멘테이션 기법에 의한 광대역 마이크로스트립 로트만 렌즈의 해석 및 설계)

  • 이광일;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.769-776
    • /
    • 2003
  • This paper presents analysis and design of microstrip Rotman lens operating over wide band and wide steering angle by the contour integral method along with the segmentation method. All mutual coupling, internal reflections between ports and the discontinuity at every junction are taken into account. Equally spaced ports are designed and realized, which make suppress output ripple through the array ports. Impedance matching and mutual coupling between ports are analyzed and optimized using 12 input and 12 output exponential tapers. The measured results of fabricated lens show ${\pm}$ 1.8 dB insertion loss deviation over 6∼18 GHz wide frequency range and beam steering accuracy less than 1$^{\circ}$over ${\pm}$53$^{\circ}$angle and agrees well with the analysis results.

Measurement Method of Noise Correlation Matrix Using Relative Noise Ratio (상대적인 잡음비를 이용한 잡음상관행렬 측정방법)

  • Lee, Dong-Hyun;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.430-437
    • /
    • 2016
  • In general, noise measurement results show larger random ripple than those of the network analyzer. The reason for the lager random ripple of the noise measurements is considered that the general noise measurements uses absolute measured noise powers, while the network analyzer measures using a ratio of the measured powers. In this paper, a novel measurement method of noise correlation matrix using relative noise ratios is proposed. Proposed method measures the five noise powers of DUT for the five input impedance variations and the four relative noise ratios are formed using the five measured noise powers. The four noise ratios are used to compute the noise correlation matrix and noise parameters. The resulting noise parameters for a 0.5 dB attenuator show good agreements with theoretical values calculated by S-parameters. Also, the noise parameters of an active DUT with a noise figure of less than 1 dB are measured and the measured results show a small random ripple as expected and their values are physically acceptable. In conclusion, the proposed method can be applied to the noise parameter measurements for DUT with a noise figure below 1 dB.

A Study on Rectangular-Ring Patch Active Antenna with Dual Polarization Diversity (이중편파 다이버시티 특성을 갖는 사각 링 구조의 능동형 패치 안테나에 관한 연구)

  • Yun, Gi-Ho
    • Journal of IKEEE
    • /
    • v.13 no.3
    • /
    • pp.72-79
    • /
    • 2009
  • This paper describes a compact microstrip active antenna with dual polarization. The antenna, receiving both a left-hand circularly polarized wave and a right-hand circularly polarized wave, has a function of polarization diversity. A square-shaped empty room is located on the inside of the microstrip radiator so that the size has been reduced. And slots are added around feeding point to improve input matching. Also, amplifier and switching circuitry are placed at the empty room to increase antenna gain and to select one of the circular polarizations, respectively. The proposed antenna has been applied to GPS(global positioning system). The measurement results show that it has 10dB-impedance bandwidth, 3dB axial bandwidth of about 50MHz, 3dB beamwidth of 90degree, and gain of 13dBi, respectively, for RHCP. Also, it has 3dB axial bandwidth of about 50MHz, 3dB beamwidth of 84 degree, and gain of 12dBi, respectively, for LHCP.

  • PDF

Analysis of Wideband Microstrip Slot Antenna with Cross-shaped Feedline using 2-layer Dielectrics (2층 유전체를 사용한 십자형 급전선을 갖는 광대역 마이크로스트립 슬롯 안테나의 해석)

  • 장용웅;신호섭
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.2
    • /
    • pp.69-74
    • /
    • 2000
  • The bandwidth of microstrip slot antenna with T-shaped feed line was a wider than one of the conventional feeding structure. When the slot antenna with bi-directional radiator wants to radiate only one direction, the reflector must be set up seperately. But this antenna doesn't need set up reflector. And then we proposed to a new method of a directional slot radiator with a cross-shaped feedline including the reflector using 2-layers dielectric materials. It is calculated waves and electric field distribution in the time domain by using FDTD method. We also are calculated return loss, VSWR, input impedance, and radiation pattern in the frequency domain by Fourier transforming the time domain results, respectively. It was found that the bandwidth of this antenna changes as length($\I_s$) and width($\W_s$) of slot, length of the horizontal feedline($\I_d$), length of the vertical feedline($\I_u$) and offset sensitively. After optimizing the parameters of design, the maximum bandwidth was measured as 1,850MHz at the center frequency 2.5 GHz.

  • PDF

Comparative Study on Microwave Probes for Plasma Density Measurement by FDTD Simulations

  • Kim, D.W.;You, S.J.;Na, B.K.;Kim, J.H.;Chang, H.Y.;Oh, W.Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.218.1-218.1
    • /
    • 2014
  • In order to measure the absolute plasma density, various probes are proposed and investigated and microwave probes are widely used for its advantages (Insensitivity to thin non-conducting material deposited by processing plasmas, High reliability, Simple process for determination of plasma density, no complicate assumptions and so forth). There are representative microwave probes such as the cutoff probe, the hairpin probe, the impedance probe, the absorption probe and the plasma transmission probe. These probes utilize the microwave interactions with the plasma-sheath and inserted structure (probe), but frequency range used by each probe and specific mechanisms for determining the plasma density for each probe are different. In the recent studies, behaviors of each microwave probe with respect to the plasma parameters of the plasma density, the pressure (the collision frequency), and the sheath width is abundant and reasonably investigated, whereas relative diagnostic characteristics of the probes by a comparative study is insufficient in spite of importance for comprehensive applications of the probes. However, experimental comparative study suffers from spatially different plasma characteristics in the same discharge chamber, a low-reproducibility of ignited plasma for an uncertainty in external discharge parameters (the power, the pressure, the flow rate and so forth), impossibility of independently control of the density, the pressure, and the sheath width as well as expensive and complicate experimental setup. In this paper, various microwave probes are simulated by finite-different time-domain simulation and the error between the input plasma density in FDTD simulations and the measured that by the unique microwave spectrums of each probe is obtained under possible conditions of plasma density, pressure, and sheath width for general low-temperature plasmas. This result shows that the each probe has an optimum applicable plasma condition and reliability of plasma density measurement using the microwave probes can be improved by the complementary use of each probe.

  • PDF

Development of a High-Performance Bipolar EEG Amplifier for CSA System (CSA 시스템을 위한 양극 뇌파증폭기의 개발)

  • 유선국;김창현;김선호;김동준
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.205-212
    • /
    • 1999
  • When we want to observe and record a patient's EEG in an operating room, the operation of electrosurgical unit(ESU) causes undesirable artifacts with high frequency and high voltage. These artifacts make the amplifiers of the conventional EEG system saturated and prevent the system from measuring the EEG signal. This paper describes a high-performance bipolar EEG amplifier for a CSA (compressed spectral array ) system with reduced ESU artifacts. The designed EEG amplifier uses a balanced filter to reduce the ESU artifacts, and isolates the power supply and the signal source of the preamplifier from the ground to cut off the current from the ESU to the amplifier ground. To cancel the common mode noise in high frequency, a high CMRR(common mode rejection ratio) diffferential amplifier is used. Since the developed bipolar EEG amplifier shows high gain, low noise, high CMRR, high input impedance, and low thermal drift, it is possible to observe and record more clean EEG signals in spite of ESU operation. Therefore the amplifier may be applicable to a high-fidelity CSA system.

  • PDF

A Study on the Radiation Characteristics of Microstrip Array Antennas on the Nonplanar Surface (곡면에서의 마이크로스트립 어레이 안테나의 복사 특성에 관한 연구)

  • 구연건;이정수;고광태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.2
    • /
    • pp.121-136
    • /
    • 1989
  • In this paper, an attempt has been made to analyze the theoretically and verify experimentally the effect of curvature on the radiation characteristics of microstrip array antennas mounted conformally on the concave surface and the convex surface of the cylindrical body. The analysis of single element microstrip antenna is made by using the analysis method of Transmission Line Model. The theory of array antennas is established by application of the method of transformed coordinates, in which the translation and the ratation about each single element arrayed two-demensionally on the nonplanar surface are under consideration, and it is investigated by computation of the synthetic electric field strength in the far zone. In addition, various radiation characteristics, such as return loss, resonant frequency, radiation pattern, half-power, beamwidth, gain, are measrued and compared with the theroetical values according to the variation of curvature, by designing and building 4-element array microstrip antenna operating at 10 GHz, and microstrip feed lines. As predicted in theroy, it is verified that radiation pattern of antennas mounted on the concave and the convex surfaces alike broadens as the radius of curvature decreases. And for the curved surfaces, aggrement between computed values of the total synthetic radiation power pattern by the method of transformed coordinates and measured valuse is good. Besides, it is found that resonant frequency, input impedance and gain are hardly affected by the radius of curvature.

  • PDF

Electromagnetic Interactions between a Cellular Phone and the Human Body and Synthesis of a Bone-Equivalent Material (휴대폰 전자파와 인체의 상호 영향 및 뼈 유사 물질 합성 연구)

  • 윤용섭;김인광;전중창;박위상
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.2
    • /
    • pp.277-290
    • /
    • 1999
  • A simulation using the finite-difference time-domain method to analyze the electromagnetic interactions between a cellular phone and the human body was conducted, and a synthesis of a bone-equivalent material to make a human head phantom was performed. A test model of the cellular phone was fabricated to measure its reflection coefficient and radiation pattern in the free space. Various effects of the human body on the characteristics of the phone, such as input impedance, reflection coefficient, radiation pattern, and radiation efficiency are analyzed as the distance between the head and the phone antenna varies. When the phone was operated close to the head, the resonant frequency of the antenna decreased by up to 12%. With the output power of 0.6W, as long as the distance was larger than 30mm, the 1-g averaged peak SAR was below the ANSI/IEEE safety guideline, 1.6 W/kg. To synthesize the bone-equivalent material, an epoxy with hardener and a graphite powder were used as basis ingredients, and a small amount of a conducting epoxy was added to control the conductivity of the material. A material having a relative permittivity of 18.04 and a conductivity of 0.347, which are close to those of the bone at 850 MHz, was synthesized.

  • PDF

A 800MHz~5.8GHz Wideband CMOS Low-Noise Amplifier (800MHz~5.8GHz 광대역 CMOS 저잡음 증폭기 설계)

  • Kim, Hye-Won;Tak, Ji-Young;Lee, Jin-Ju;Shin, Ji-Hye;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.45-51
    • /
    • 2011
  • This paper presents a wideband low-noise amplifier (LNA) covering 800MHz~5.8GHz for various wireless communication standards by utilizing in a 0.13um CMOS technology. Particularly, the LNA consists of two stages to improve the low-noise characteristics, that is, a cascode input stage and an output buffer with noise cancellation technique. Also, a feedback resistor is exploited to help achieve wideband impedance matching and wide bandwidth. Measure results demonstrate the bandwidth of 811MHz~5.8GHz, the maximum gain of 11.7dB within the bandwidth, the noise figure of 2.58~5.11dB. The chip occupies the area of $0.7{\times}0.9mm^2$, including pads. DC measurements reveal the power consumption of 12mW from a single 1.2V supply.

Modal Analysis of Loop Coupling Structure in End Launcher Rectangular Waveguide Adapter (엔드론치형 구형도파관 어댑터 내부의 루프결합구조에 대한 모드 해석)

  • Kim, Dong-Hyun;Jwa, Jeong-Woo;Yang, Doo-Yeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.2
    • /
    • pp.119-126
    • /
    • 2008
  • In this paper, the loop coupling model for the analysis of end launcher rectangular waveguide adapter are proposed. The formula of input impedance from this model are presented. The influence of propagation mode and higher modes in rectangular waveguide are analyzed and design parameters of the end launcher adapter are investigated. The computational results between the proposed theoretical analysis and the previous papers are compared and are verified by HFSS. The end launcher rectangular waveguide adapter consists of the coupling geometry which is connected the inner conductor of $50{\Omega}$ coaxial line through into the 17.6mm feeding loop in a WR90 commercial waveguide, and the VSWR is maximum 2.0 over operating frequency from 7.5GHz to 10.6GHz.