• Title/Summary/Keyword: INPUT IMPEDANCE

Search Result 652, Processing Time 0.026 seconds

Design of X-band 40 W Pulse-Driven GaN HEMT Power Amplifier Using Load-Pull Measurement with Pre-matched Fixture (사전-정합 로드-풀 측정을 통한 X-대역 40 W급 펄스 구동 GaN HEMT 전력증폭기 설계)

  • Jeong, Hae-Chang;Oh, Hyun-Seok;Yeom, Kyung-Whan;Jin, Hyeong-Seok;Park, Jong-Sul;Jang, Ho-Ki;Kim, Bo-Kyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1034-1046
    • /
    • 2011
  • In this paper, a design and fabrication of 40 W power amplifier for the X-band using load-pull measurement of GaN HEMT chip are presented. The adopted active device for power amplifier is GaN HEMT chip of TriQuint company, which is recently released. Pre-matched fixtures are designed in test jig, because the impedance range of load-pull tuner is limited at measuring frequency. Essentially required 2-port S-parameters of the fixtures for extraction optimal input and output impedances is obtained by the presented newly method. The method is verified in comparison of the extracted optimal impedances with data sheet. The impedance matching circuit for power amplifier is designed based on EM co-simulation using the optimal impedances. The fabricated power amplifier with 15${\times}$17.8 $mm^2$ shows the efficiency above 35 %, the power gain of 8.7~8.3 dB and the output power of 46.7~46.3 dBm at 9~9.5 GHz with pulsed-driving width of 10 usec and duty of 10 %.

A Compact Two-Wire Helical Antenna with an Open Stub for a T-DMB Antenna of Mobile Devices (단말기 T-DMB용 안테나로 사용될 수 있는 Open Stub를 가지는 소형 Two-Wire Helical 안테나)

  • Lee, Dong-Hyun;Park, Se-Hyun;Kim, Young-Eil;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.151-157
    • /
    • 2007
  • We have presented a compact two-wire helical antenna adopted an open stub in opposite to a feeding point, which is for a T-DMB antenna of mobile devices. By adjusting the length of the open stub or pasting a dielectric material on the open stub, the input impedance around 200 MHz, bands of the T-DMB, can be easily control, even though the total height of the antenna is less than 8 cm(0.053 $\lambda$ at 200 MHz). The operating mechanism of the antenna is explained by using equivalent circuits of two modes, an unbalanced mode and a balanced mode. Based on the analysis of the equivalent circuits, the effects of using the open stub are validated. Several proposed antennas have been fabricated and measured. One of the fabricated antennas has -10 dB impedance bandwidth of $196{\sim}204$ MHz(8 MHz) whose value covers one channel of the T-DMB(6 MHz). The measured $S_{21}$ of the antenna is -38.6 dB which is about 17 dB higher than that of a monopole antenna whose height is same with the proposed antenna.

Multi-Band Antenna Design by Controlling Characteristic of Third Order Mode (고차 모드 주파수 특성 제어 다중 대역 안테나)

  • Yu, Jaekyu;Zhang, Rui;Liu, Yang;Lee, Jaeseok;Kim, Hyung-Hoon;Kim, Hyeongdong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.12
    • /
    • pp.1343-1350
    • /
    • 2012
  • This paper presents a new method for designing a dual-band WIFI antenna using the third-order harmonic mode of a monopole antenna whose first-order mode operates at the low frequency band of WIFI. As analysing the current distribution of the third-order mode of this monopole antenna, the strongest point of electric field can be found. Then by attaching a stub at this point, the resonant frequency of the stub radiator can be adjusted from the third-order mode of the monopole antenna into the high frequency band of WIFI and the input impedance at this resonant frequency can be controlled with the width of the branch, without affecting the low frequency band of WIFI (the first-order mode of the monopole antenna). The compact dual-band antenna is designed at the size of an USB(universal serial bus) dongle and the bandwidth covers 600 MHz(2.3~3 GHz) at 2 GHz and 1 GHz(4.9~5.9 GHz) at 5 GHz under -10 dB which is satisfied with WLAN frequency. Efficiency of proposed antenna achieves over 50 % at WLAN frequency.

Bolt Shape UHF RFID Tag Antenna for Insertion to a Tree (생목 삽입용 볼트 모양의 UHF RFID 태그 안테나 설계)

  • Chung, You-Chung;Jeon, Byung-Don
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.270-273
    • /
    • 2012
  • A plastic bolt shape UHF RFID tag has been developed for a live tree. The UHF tag is designed and installed into the head part of the bolt, inserted into a tree for management of tree. If the tag antenna is installed near the high dielectric constant material, the impedance of the tag antenna will be changed, and the tag does not work. Therefore, the dielectric constants of wood and plastic bolt are considered for tag antenna design. The input reflection coefficient characteristics and the reading range patterns are measured and compared. This UHF RFID tag can be applied into a live tree, and the status and location of tree can be controlled with the RFID tag. This developed UHF tag can be applied to any applications and objects using a bolt.

The Analysis of the Wideband T-shaped Microstripline-fed Slot Antenna with a Rectangular Stub (광대역성을 위한 장방형 스터브를 갖는 T-모양 급전선 마이크로스트립 슬롯 안테나의 해석)

  • 장용웅;윤종철;박익모;신철재
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.9
    • /
    • pp.13-19
    • /
    • 1998
  • It was shown that the bandwidth of T-shaped microstripline fed slot antenna is wider than many of the conventional feeding structures. In this paper, we proposed a new method of enhancing the bandwidth of T-shaped microstripline fed slot antenna with a shunt open stub, and analyzed this antenna by using the FDTD method. We have computed waves and electric field distribution in the time domain, and VSWR, input impedance and radiation pattern in the frequency domaim by Fourier transforming the time domain results. It was found that the bandwidth of this antenna depend on the position(L$_1$) and length(L$_2$) of a shunt open stub. When these parameters are L$_1$=30 mm and L$_2$=33mm, we obtained the maximum bandwidth at the center frequency of 2.3 GHz. From the computed results, the optimum antenna is designed and fabricated. The fractional bandwidth of this antenna was 53.9 %. The measured results were in relatively good accordance with computed values.

  • PDF

New Wilkinson Power Divider Using Lumped Elements (집중소자를 이용한 새로운 윌킨슨 전력 분배기)

  • Cho, Seung-Hyun;Park, Chan-Hyeong;Chung, In-Young;Jeong, Jin-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.128-134
    • /
    • 2009
  • In this paper, we propose a new lumped Wilkinson power divider which is designed to have lower quality-factors in the impedance transformation. Therefore, it can provide wider bandwidth than the conventional one. Moreover, the proposed power divider consists of fewer number of elements so that the circuit size can be further reduced. Simulation results show that the proposed lumped power divider allows a 50% wider bandwidth in the return loss and isolation performance. The conventional and new Wilkinson power was designed and fabricated based on the derived equations at 2.0 GHz. In the measurement, the proposed divider achieved a good performance with an input return loss ($S_{11}$) of -23.0 dB, an isolation ($S_{23}$) of -29.0 dB and an insertion loss ($S_{21}$) of -3.12 dB at the design frequency with wider bandwidth than the conventional one.

A Design of Novel Class-A bipolar $CCII{\pm}$ and Its Application to output Current Controllable CCII+ (새로운 A급 바이폴라 $CCII{\pm}$와 이를 이용한 출력 전류 제어 가능한 CCII+ 설계)

  • Cha, Hyeong-Woo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.11
    • /
    • pp.48-56
    • /
    • 2011
  • Novel class-A bipolar current conveyor($CCII{\pm}$) with differential current output and its application to output current controllable CCII+ for electronic tuning systems are designed. The $CCII{\pm}$ is consists of conventional CCII+ and complementary cross current sources. The CCII+ with controllable the output current consists of the $CCII{\pm}$ and a current gain amplifier with single-ended current output. The simulation result shows that the $CCII{\pm}$ has current input impedance of $1.9{\Omega}$ and a good linearity for voltage and current follower. The proposed CCII+ has 3-dB cutoff frequency of 10MHz for the range over bias control current $100{\mu}A$ to 10mA. The range of output current control is four decade. The power dissipation of the CCII+ is 4.5mW at supply voltage of ${\pm}2.5V$.

Compact Dual-band Slot Antenna With Bent Slots (접힌 슬롯이 추가된 소형 이중 대역 슬롯 안테나)

  • Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1049-1056
    • /
    • 2016
  • In this paper, a design method for a compact dual-band slot antenna with bent slot is studied. Bent slots are added on the rectangular slot of the proposed antenna for dual-band operation. The rectangular slot is fed by a coaxial cable by placing a rectangular feeding patch inside the slot. When the bent slots are added onto the both corner of the upper side of the rectangular slot symmetrically, a new resonant frequency is created in low frequency because of the increasement of the slot length. A prototype of the proposed dual-band slot antenna operating at 2.45 GHz WLAN band and 4.50-8.30 GHz band including 5GHz WLAN band is fabricated on an FR4 substrate with a dimension of 30 mm by 30 mm. Experiment results show that the antenna has a desired impedance characteristic with a frequency band of 2.40-2.49 GHz and 4.33-9.85 GHz for an input reflection coefficient < -10 dB.

Comparative simulation of microwave probes for plasma density measurement and its application

  • Kim, Dae-Ung;Yu, Sin-Jae;Kim, Si-Jun;Lee, Jang-Jae;Kim, Gwang-Gi;Lee, Yeong-Seok;Yeom, Hui-Jung;Lee, Ba-Da;Kim, Jeong-Hyeong;O, Wang-Yeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.185.2-185.2
    • /
    • 2016
  • The plasma density is an essential plasma parameter describing plasma physics. Furthermore, it affects the throughput and uniformity of plasma processing (etching, deposition, ashing, etc). Therefore, a novel technique for plasma density measurement has been attracting considerable attention. Microwave probe is a promising diagnostic technique. Various type of cutoff, hairpin, impedance, transmission, and absorption probes have been developed and investigated. Recently, based on the basic type of probes, modified flat probe (curling and multipole probes), have been developing for in situ processing plasma monitoring. There is a need for comparative study between the probes. It can give some hints on choosing the reliable probe and application of the probes. In this presentation, we make attempt of numerical study of different kinds of microwave probes. Characteristics of frequency spectrum from probes were analyzed by using three-dimensional electromagnetic simulation. The plasma density, obtained from the spectrum, was compared with simulation input plasma density. The different microwave probe behavior with changes of plasma density, sheath and pressure were found. To confirm the result experimentally, we performed the comparative experiment between cutoff and hairpin probes. The sheath and collision effects are corrected for each probe. The results were reasonably interpreted based on the above simulation.

  • PDF

Highly Reliable Triboelectric Rotational Energy Scavenger

  • Lee, Younghoon;Lee, Bada;Choi, Dukhyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.397-397
    • /
    • 2016
  • Triboelectric nanogenerators (TENG) can produce power from ambient mechanical sources and have strong points of high output performance, light weight, low cost, and easy manufacturing process. It is expected that TENG can be utilized in the fields of wireless electronics and self-powered devices in the world which pays attention to healthcare and the IoT. In this work, we focus on scavenging ambient rotational energy by using a durably designed TENG. In previous studies regarding harvesting rotation mode energy, the devices were based on sliding mechanism and durability was not considered as a major issue. However friction by rotation causes reliability problems due to wear and tear. Therefore, in this study, we convert rotary motion to linear motion utilizing a cam by which we can then utilize contact-mode TENG and improve device reliability. In order to increase output performance, bumper springs were used below the TENG and the optimum value for the bumper spring constant was analyzed theoretically. Furthermore, the inserting a soft substrate was proposed and its effect on high output was determined to be due to an increase in the contact area. By increasing the number of cam noses, the output frequency was shown to increase linearly. For the purpose of maximum power transfer, the input impedance of the device was determined. Finally, to demonstrate the use of the C-TENG as a direct power source, it was installed on a commercial bicycle wheel and connected to 180 LEDs. In conclusion we present a rotational motion TENG energy scavenger system designed for enhanced durability and optimized output by appropriate choice of spring constants and substrate.

  • PDF