• Title/Summary/Keyword: INPUT IMPEDANCE

Search Result 652, Processing Time 0.023 seconds

Estimation of swimming angle and body impedance of sandfish (Arctoscopus japonicus) (도루묵의 체내 임피던스 및 유영자세각 평가)

  • YOON, Euna;HWANG, Doo-Jin;OH, Wooseok;LEE, Hyungbeen;LEE, Kyounghoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.2
    • /
    • pp.121-129
    • /
    • 2022
  • Density and sound speed contrasts (g and h, respectively), and swimming angle were measured for sandfish (Arctoscopus japonicus) without swimbladder. The density contrast was measured by the volume displacement method while the sound speed contrast was measured by the acoustic measurements of travel time (time-of-flight method). The swimming angle was measured by dividing it into daytime, nighttime, daytime feeding and nighttime feeding. The g was 1.001 to 1.067 with an average (± standard deviation) of 1.032 (± 0.017), and the h was 1.007 to 1.022 with an average (± standard deviation) of 1.015 (± 0.003). The swimming angles (mean ± standard deviation) were 16.8 ± 10.3° during the daytime, 1.9 ± 12.3° during the nighttime, 30.2 ± 12.6° in the daytime feeding and 35.0 ± 13.2° in the nighttime feeding. These results will provide important parameters input to calculate theoretical scattering models for estimating the acoustic target strength of sandfish.

CMI Tolerant Readout IC for Two-Electrode ECG Recording (공통-모드 간섭 (CMI)에 강인한 2-전극 기반 심전도 계측 회로)

  • Sanggyun Kang;Kyeongsik Nam;Hyoungho Ko
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.432-440
    • /
    • 2023
  • This study introduces an efficient readout circuit designed for two-electrode electrocardiogram (ECG) recording, characterized by its low-noise and low-power consumption attributes. Unlike its three-electrode counterpart, the two-electrode ECG is susceptible to common-mode interference (CMI), causing signal distortion. To counter this, the proposed circuit integrates a common-mode charge pump (CMCP) with a window comparator, allowing for a CMI tolerance of up to 20 VPP. The CMCP design prevents the activation of electrostatic discharge (ESD) diodes and becomes operational only when CMI surpasses the predetermined range set by the window comparator. This ensures power efficiency and minimizes intermodulation distortion (IMD) arising from switching noise. To maintain ECG signal accuracy, the circuit employs a chopper-stabilized instrumentation amplifier (IA) for low-noise attributes, and to achieve high input impedance, it incorporates a floating high-pass filter (HPF) and a current-feedback instrumentation amplifier (CFIA). This comprehensive design integrates various components, including a QRS peak detector and serial peripheral interface (SPI), into a single 0.18-㎛ CMOS chip occupying 0.54 mm2. Experimental evaluations showed a 0.59 µVRMS noise level within a 1-100 Hz bandwidth and a power draw of 23.83 µW at 1.8 V.

L-shaped Slot Antenna for WLAN MIMO Application (무선랜 MIMO용 L-형 슬롯 안테나)

  • Song, Won-Ho;Nam, Ju-Yeol;Lee, Ki-Yong;Lee, Young-soon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.344-351
    • /
    • 2016
  • In the present study, a dual-band multiple-input-multiple-output (MIMO) antenna covering WLAN frequency bands of 2.4 GHz (2.4 ~ 2.484 GHz) and 5 GHz (5.15 ~ 5.825 GHz) is newly presented to avoid use of decoupling structure for increasing isolation. The antenna consists of two L-shaped slots with n-shaped slots etched on the floating ground plane surrounded by open ended L-shaped slots which are placed in the left and right corner of PCB respectively. The proposed antenna is designed and fabricated on one side of FR4 substrate with dielectric constant of 4.3, thickness of 1.6 mm, and size of $50{\times}50mm2$. It has been observed that the measured impedance bandwidths ($S_{11}{\leq}-10dB$) are 0.3 GHz (2.28 ~ 2.58 GHz) in 2.4 GHz frequency band and 0.89 GHz (5.11 ~ 6 GHz) in 5 GHz frequency band respectively. In addition, It has been observed that the whole efficiency are more than 80 % in the whole operating frequency band and envelope correlation coefficient of the antenna is less than 0.05 as a very small value in spite of nothing of the decoupling structure.

The design of Fully Differential CMOS Operational Amplifier (Fully Differential CMOS 연산 증폭기 설계)

  • Ahn, In-Soo;Song, Seok-Ho;Choi, Tae-Sup;Yim, Tae-Soo;Sakong, Sug-Chin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.85-96
    • /
    • 2000
  • It is necessary that fully differential operational amplifier circuit should drive an external load in the VLSI design such as SCF(Switched Capacitor Filter), D/A Converter, A/D Converter, Telecommunication Circuit and etc. The conventional CMOS operational amplifier circuit has many problems according to CMOS technique. Firstly, Capacity of large loads are not able to operate well. The problem can be solve to use class AB stages. But large loads are operate a difficult, because an element of existing CMOS has a quadratic functional relation with input and output voltage versus output current. Secondly, Whole circuit of dynamic range decrease, because a range of input and output voltages go down according as increasing of intergration rate drop supply voltage. The problem can be improved by employing fully differential operational amplifier using differential output stage with wide output swing. In this paper, we proposed new current mirror has large output impedance and good current matching with input an output current and compared with characteristics for operational amplifier using cascoded current mirror. To obtain large output swing and low power consumption we suggest a fully differential operational amplifier. The circuit employs an output stage composed new current mirror and two amplifier stage. The proposed circuit is layout and circuit of capability is inspected through simulation program(SPICE3f).

  • PDF

Unequal Power Divider based on Adjustment Electrical Length of Uniform Transmission Line (단일 전송선로의 전기적 길이 조정을 이용한 비대칭 분배기)

  • Kwon, Sang-Keun;Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.642-647
    • /
    • 2018
  • In this paper, an unequal power divider based on adjusting electrical length of uniform transmission line is presented. This divider consists of three uniform transmission lines and one isolation resistor and have the different port impedances of input and output. The feature of proposed divider can changed the power dividing ratio to adjust only electrical length of uniform transmission lines. To verify the feasibility of proposed power divider, two divider circuits are designed, one is 1:2 power dividing ratio divider with $60{\Omega}$ uniform transmission line and $40{\Omega}$ input port impedances and $45{\Omega}$ output port impedances, the performance data were measured the insertion losses of 1.7 dB/ 5.0 dB, return losses of more than -30 dB and isolation of more than -35 dB. The other is 1:4 power dividing ratio divider with $40{\Omega}$ uniform transmission line and $50{\Omega}$ input port impedances and $75{\Omega}$ output port impedances, the performance data were measured the insertion losses of 1.3 dB/ 6.8 dB, return losses of more than -12 dB and isolation of more than -19 dB. The measured performance data agreed well with the simulated results.

Theoretical Analysis of Bragg-Reflector Type FBAR with Resonance Mode (공진 모드에 따른 Bragg-Reflector Type FBAR 의 이론적 분석)

  • 조문기;윤영섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.11
    • /
    • pp.9-18
    • /
    • 2003
  • Two configurations of Film Bulk Acoustic Wave Resonators with acoustic quater-wave bragg reflector layers are theoretically analyzed using equivalent circuits and the difference of their characteristics are discussed. We compare the characteristics of λ/2 mode to those of ideal FBAR with top and bottom electrode contacting air and the characteristics of λ/4 mode to those of ideal FBAR with top electrode contacting air and bottom electrode clamped. We assume that the piezoelectric film is ZnO, the electrode is A1 and the substrate is Si, ABCD parameters are extracted and input impedance is calculated by converting the equivalent circuit from Mason equivalent circuits to the simplified equivalent circuits that ABCD parameters are extracted possible, From the variation of resonance frequency due to the change of thickness of reflector layers and the variation of electrical Q due to the change of mechanical Q of reflector layers, it is confirmed that the reflector layer just under the bottom electrode have the greatest effect on the varation of resonance frequency and electrical Q. It is shown that the number of reflector layers required for the saturation of electrical Q decreases with the increase of the impedance ratio of reflector layers and electrical Q of λ/2 mode is larger than that of λ/4 mode, Electromechanical coupling factor is independent of the number of layers, The impedance ratio of reflector layers becomes larger as the electromechanical coupling factor becomes larger, The electromechanical coupling factor of the two mode are smaller than those of ideal FBARs because of the trapping of acoustic energy in the reflector layers, The insertion loss of the ladder filter decreases with the increase of the number of reflector layers but the bandwidth is not affected much by the number of reflector layers, As the impedance ratio of reflector layers becomes larger the insertion loss becomes smaller and the bandwidth becomes wider, In our analysis of the two mode, characteristics of λ/2 mode appear to be slightly more favorable than that of λ/4 mode

Design of a Dual Band-pass Filter Using Fork-type Open Stubs and SIR Structure (포크 형태의 개방형 스터브 및 SIR 구조를 이용한 이중대역 대역통과 여파기의 설계)

  • Tae-Hyeon Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.252-264
    • /
    • 2023
  • This paper proposes a design of a dual-band band-pass filter that integrates a λg/2 open SIR structure, a transmission line, and a fork-type structure with symmetric and asymmetric open stubs. To obtain the dual-band effect, the proposed filter uses the SIR structure and adjusts the impedance ratio of the SIR structure. Therefore, the position of the harmonics of the filter is shifted through the adjustment of the impedance ratio, and this can obtain a double-band effect. In order to obtain the dual-band characteristics, the dual-band effect is obtained by inserting a open stub between the SIR structures with the SIR structure divided in half. In addition, the second frequency response is obtained by adjusting the length of the open symmetrical stub in the fork-shaped structure. The asymmetrical open stub in the fork form achieves optimum bandwidth by adjusting the length. Therefore, the first center frequency of the proposed band-pass filter is 5.896 GHz and the bandwidth is 13.6 %. At this time, the measurement results are 0.13 dB and 33.6 dB. The second center frequency is 5.906 GHz and the bandwidth is 13.6 %. At this time, the measurement results are 0.15 dB and 19.8 dB. The reason is that when the impedance ratio (Δ) is higher than 1, the position of the harmonic is shifted to a lower frequency band. However, if the impedance ratio (Δ) is lowered by one step, the position of harmonics will move to a higher frequency band. The function of the filter designed using these characteristics can be obtained from the measurement result. The proposed band-pass filter has no coupling loss and no via energy concentration loss because there is no coupling structure of input/output and no via hole. Therefore, system integration is possible due to its excellent performance, and it is expected that dedicated short-range communication (DSRC) system applications used in traffic communication systems will be possible.

Polyphase I/Q Network and Active Vector Modulator Based Beam-Forming Receiver For UAV Based Airborne Network (UAV 공중 네트워크를 위한 손실 없는 Polyphase I/Q 네트워크 및 능동 벡터 변조기 기반 빔-포밍 수신기)

  • Jung, Won-jae;Hong, Nam-pyo;Jang, Jong-eun;Chae, Hyung-il;Park, Jun-seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1566-1573
    • /
    • 2016
  • This paper presents a beam-forming receiver with polyphase In-phase/Quadrature-phase (I/Q) network for airborne communication. In beam-forming receiver, the insertion loss (IL) difference between input path increases the receiver noise figure (NF). The major element for generating IL difference is the impedance variation of phase shifter. In order to maintain a constant IL in every phase, this paper propose a lossless polyphase I/Q network based beam-forming receiver. The proposed lossless polyphase I/Q network has low Q-factor and high impedance for drive back-end VGA (Variable gain amplifier) block with low insertion loss. The 2-stage VGA controls in-phase and quadrature-phase amplitude level for vector summation. The proposed beam-forming receiver prototype is fabricated in TSMC $0.18{\mu}m$ CMOS process. The prototype cover the $360^{\circ}$ with $5.6^{\circ}$ LSB. The average RMS phase error and amplitude error is approximately $1.6^{\circ}$ and 0.3dB.

Optical thyristor operating at 1.55 μm (장파장에서 동작하는 Optical Thyristor)

  • Kim, Doo-Gun;Kim, Hyung-Soo;Jung, Sung-Jae;Choi, Young-Wan;Lee, Seok;Woo, Deok-Ha;Jhon, Young-Min;Yu, Byung-Geel
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.2
    • /
    • pp.146-150
    • /
    • 2002
  • 1.55${\mu}{\textrm}{m}$ PnpN optical thyristor as a smart optical switch has potential applications in advanced optical communication systems. PnpP optical thyristors operating at 1.55${\mu}{\textrm}{m}$ are proposed and fabricated for the first time. In the optical thyristors, we employ InGaAs/InP multiple quantum well (MQW) for the active n- and p-layers. The thyristors show sufficiently nonlinear s-shape I-V characteristics and spontaneous emission. In the OFF-state, the device has a high-impedance up to switching voltage of 4.03(V). On the other hand, it has low-impedance and emits spontaneous light as a light-emitting diode in the ON-state voltage of 1.77(V), and switching voltage is changed under several light input conditions. It can be used as a header processor in optical asynchronous transfer mode (ATM), as a hard limiter in optical code division multiple access (CDMA) and as a wavelength converter in optical WDM systems.

Design of 2.4/5.8GHz Dual-Frequency CPW-Fed Planar Type Monopole Active Antennas (2.4/5.8GHz 이중 대역 코프래너 급전 평면형 모노폴 능동 안테나 설계)

  • Kim, Joon-Il;Chang, Jin-Woo;Lee, Won-Taek;Jee, Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.8
    • /
    • pp.42-50
    • /
    • 2007
  • This paper presents design methods for dual-frequency(2.4/5.8GHz) active receiving antennas. The proposed active receiving antennas are designed to interconnect the output port of a wideband antenna to the input port of an active device of High Electron Mobility Transistor directly and to receive RF signals of 2.4GHz and 5.2GHz simultaneously where the impedance matching conditions are optimized by adjusting the length of $1/20{\lambda}_0$(@5.8GHz) CPW transmission line in the planar antenna The bandwidth of implemented dual-frequency active receiving antennas is measured in the range of 2.0GHz to 3.1GHz and 5.25GHz to 5.9GHz. Gains are measured of 17.0dB at 2.4GHz and 15.0dB at 5.2GHz. The measured noise figure is 1.5dB at operating frequencies.