• Title/Summary/Keyword: INDEX OF PLANT CROWN VOLUME

Search Result 4, Processing Time 0.015 seconds

Indicators for the Quantitative Assessment of Tree Vigor Condition and Its Theoretical Implications : A Case Study of Japanese Flowering-cherry Trees in Urban Park (도시공원에 식재된 왕벚나무 수종을 중심으로 한 수목활력도의 정량평가지표 개발 및 이론적 고찰에 관한 연구)

  • Song, Youngkeun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.4
    • /
    • pp.57-67
    • /
    • 2014
  • The vigor condition of trees is an important indicator for the management of urban forested area. But difficulties in how to assess the tree vigor condition still remain. Previous efforts were limited in the 1) measurement of single indicator rather than using multiple indices, 2) purpose-oriented measurement such as for air-pollution effect or specific pathological symptom, and 3) ordinal-scale evaluations by field crews 4) despite human errors based on his/her experiences or prior knowledge. Therefore, this study attempted to develop a quantitative and objective methodology for assessing tree vigor condition, by measuring multiple modules and building the profile inventory. Furthermore, the possibility and limitations were discussed in terms of schematic frames describing tree vigor condition. The vigor condition of 56 flowering cherry plants in urban park were assessed by in-situ measurements of following eight items; growth of crown(Gc), growth of shoots, individual tree volume(Vol), plant area index, woody area index, leaf area index, leaf chlorophyll content(Lc) and leaf water content(Lw). For validation, these measurements were compared with the ranks of holistic tree vigor condition, which were visually assessed using a 4-point grading scale based on the expert's knowledge. As a result, the measures of each evaluation item successfully highlighted a variety of aspects in tree vigor condition, including the states of both photosynthetic and non-photosynthetic parts. The variation in the results depending on evaluated parts was shown within an individual tree, even though the broad agreement among the results was found. The result of correlation analysis between the tested measurements and 4-point visual assessment, demonstrated that the state of water-stressed foliage of the season (Lw) or the development of plant materials since sapling phase (Vol) could be better viewed from the outer appearance of trees than other symptoms. But only based on the visual assessment, it may be difficult to detect the quality of photosynthesis (Lc) or the recent trend in growth of trees (Gc). To make this methodology simplified for the broad-scale application, the tested eight measurements could be integrated into two components by principal component analysis, which was labelled with 'the amount of plant materials' and 'vigor trend', respectively. In addition, the use of these quantitative and multi-scale indicators underlies the importance of assessing various aspects of tree vigor condition, taking into account the response(s) on different time and spatial scale of pressure(s) shown in each evaluated module. Future study should be advanced for various species at diverse developing stages and environment, and the application to wide areas at a periodic manner.

A Study on Improvement and Administration of Ecoduct through Monitoring in Uiwang's Mt. Obong (의왕시 오봉산 육교형 생물 이동통로 모니터링에 의한 관리 및 개선방안)

  • Jun Ik-Yo;Han Bong-Ho;Hong Suk-Hwan;Lee Kyong-Jae
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.1 s.114
    • /
    • pp.10-20
    • /
    • 2006
  • This study is to introduce the improvement and management of Ecoduct located in Uiwang's Mt. Obong, Gyeonggi province. The inner planting of Ecoduct is not very related to the flora of mountain areas nearby. The difference in the index of plant crown volume(GVZ), the similarity index(S.I.), and monitored animals is significant between Ecoduct and mountain areas. Putting together all of the results, the initial selection of movement and target species is excessive in number. Target species must be selected again. They will be species that are currently found on the site. The Ecoduct space must be divided into two parts: buffer planting space and wildlife corridor. Reforestation is needed since the GVZ is remarkably lower in Ecoduct than in the nearby mountain areas. Besides the vegetation of Ecoduct is densely planted in guidance planting space to connect the southern Quercus mongolica community and the northern Quercus acutissima community. Proper upkeep after construction should be continuously conducted to maintain the procedure of natural change.

Planting Design in Green Open Space, Urban Area : Planting Evaluation of Buffer Green Space in Housing Complex (도시지역 녹화공간의 배식기법 : 공동주택단지 완충녹지의 배식)

  • Cho, Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.1
    • /
    • pp.78-90
    • /
    • 1998
  • An objective of this study was to provide database for the planting disign of buffer green space. Types, planting structure, and effect of vuffer green space were investigated in five housing complexes of newtown of metropolitan area, Korea. Buffer green space in the study sites were constructed as mounding, slope, and plate. The number of species was found 20 tree and sub-tree species(10 evergreen and 20 deciduous species ) and 13 shrub species. These species were planted in one-storyed planting structure and there was no difference with ornamental species in the urban parks. Effect of sound proof by the buffer green space was recognized but sound level in four types among the seven types was observed above standard sound level for housing complex(65dB). Effect of sound proof was especially most effective in the mounding type. It was found that planting density and index of plant crown volume were mot satisfied to the function of buffer green space because of lower density and crown volume than natural vegetation per unit. Based on these results, this study suggested that buffer green space is desirable to be developed in the mounding type over two meters height with multi-layer planting model. In addition, there is needed to consider vegetation structure of natural forest around the developing site.

  • PDF

Planting Method of Buffer Green Space in the Reclaimed Seaside Areas, Rokko Island, Kobe, Japan (일본 고베시(신호시(神戶市)) 로코(육갑(六甲))아일랜드 임해매립지의 완충녹지 식재기법 연구)

  • Han, Bong-Ho;Kim, Jong-Yup;Choi, Jin-Woo;Cho, Yong-Hyeon
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.2
    • /
    • pp.157-165
    • /
    • 2010
  • This study was carried out to suggest the basic data of planting method for construction of buffer green space based on the land use in case of reclaimed land by analyzing land structure, planting concept, and planting structure in buffer green space, Rokko Island, Kobe, Japan. Rokko Island(total area: 580ha) is divided into port and logistics industry area and urban area by constructing the box type large-scale buffer green space. The land structure of buffer green space were biased mounding type, parallel mounding type, and complex mounding type. The width of buffer green space was 50meters in case of northern area, from 28 to 32meters in case of eastern area, and 37.5meters in case of western area, and the slope of that was from 18 to 25 degrees and the height of that was from 2 to 15meters. There were applied landscape and buffer planting concept on the sea side area of northern buffer green space, on the other hand landscape and shade planting concept on the Inner city side area of that. According to the result of planting structure analysis of northern buffer green space, the main woody species were those of deciduous-evergreen species grow in warm-temperate forest zone such as Quercus glauca, Cinnamomum camphora, Machilus thunbergii, Elaeagnus maritima. The results of maximum number of species and planting density by $100mm^2$ was that 9 species 22 individuals in canopy layer, 9 species 15 individuals in understory layer, 3 species 67 individuals in shrub layer, and 14 species 104 individuals in total. The plant coverage of northern buffer green space based on the ecological planting method was from 69 to 139% in case of canopy layer, from 26 to 38% in case of understory layer, from 6 to 7% in case of shrub layer, and from 101 to 184% in total. Index of plant crown volume of northern buffer green space based on the ecological planting method was from 1.40 to $3.12m^3/m^2$ in case of canopy layer, from 0.43 to $0.55m^3/m^2$ in case of understory layer, $0.06m^3/m^2$ in case of shrub layer, and from 1.89 to $3.73m^3/m^2$ in total.