• Title/Summary/Keyword: IMPACT ABSORPTION

Search Result 532, Processing Time 0.033 seconds

Impact Assessment of Vegetation Carbon Absorption and Economic Valuation Under Long-term Non-executed Urban Park Development (장기미집행공원 개발에 따른 도시 식생 탄소 흡수량에 미치는 영향 및 경제적 가치 평가)

  • Sung, Woong-Gi;Choi, Jae-Yeon;Yu, Jae-Jin;Kim, Dong-Woo;Son, Seung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.361-371
    • /
    • 2020
  • Since the implementation of the sunset law in 2020, concerns have been raised over the reckless development of long-term non-executed urban parks. In this study, the FSDAF method and CASA-NPP model were used to evaluate the annual average NPP of long-term non-executed urban parks in Seoul. Based on this, the carbon loss and economic value were assessed under five development scenarios. The total NPP value of long-term non-executed urban parks, except for the greenbelt area in Seoul, was 4,892.18 t C. In the first scenario, the NPP and cost were 4,892.18 t C of vegetation carbon and 1.18 billion won, 2,548.55 t C of vegetation carbon and 615 million won in the second scenario, 238.94 t C of vegetation carbon and 58 million won in the third scenario, 848.38 t C of vegetation carbon and 205 million won in the fourth scenario, and 1,596.00 t C of vegetation carbon and 385 million won in the fifth scenario. These results are meaningful for evaluating vegetation carbon and economic value loss according to five different development scenarios. The results of this study are expected to be useful for the preparation of measures to minimize the impact of the development of long-term non-executed urban parks.

The effect of heat input and PWHT on the mechanical properties and microstructure of HSB600 steel weldments with GMAW (HSB600강 가스메탈아크용접부에서 입열량과 용접후 열처리가 기계적 특성과 미세조직에 미치는 영향)

  • Ju, Dong-Hwi;Jang, Bok-Su;Lim, Young-Min;Koh, Jin-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.1939-1946
    • /
    • 2012
  • High performance steel for bridges requires higher performance in tensile and yield strength, toughness, weldability, etc. The purpose of this study is to investigate the weldability of HSB 600 steel. The effects of heat input (1.4~3.2kJ/mm) and postweld heat treatment (PWHT, $600^{\circ}C$, 40hr.) on the TMCP HSB600 steel weldments made by GMAW process were investigated. The tensile strength and hardness of as-welded specimens decreased with increasing heat input. Charpy V-notch impact energy did not show any significant difference by postweld heat treatment. The fine-grained acicular ferrite was mainly formed in the 2.1kJ/mm of heat input while polygonal and side plate ferrites were dominated in the high inputs. Meanwhile, tensile strength and hardness of PWHT weldments decreased due to the coarsening and globularization of ferrite microstructure and reduction of residual stresses with increasing heat inputs. However, there was no significant difference in the impact energy absorption.

A Study on Side Impact from Car-to-Car using Finite Element Analysis (유한요소해석을 이용한 차대차 측면충돌에 대한 연구)

  • Han, Yuong-Kyu;Baek, Se-Ryong;Yoon, Jun-Kyu;Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.201-209
    • /
    • 2015
  • The deformed degree of car body varies largely with the collision part from side collision of car-to-car. In case of deformation of car body caused by collision, the movement is different as speed energy changes to strain energy. Generally, in the analysis of traffic accident, the movement of car after the collision is analyzed by law of conservation of motion and the error of energy absorption rate along the deformation of car body can be calibrated by inputting coefficient of restitution, but it is current situation that coefficient of restitution applied by referring to the research results of forward collision and backward collision because the research results of side collision is rare. Vehicle model of finite element method applied by structure of car body and materials of each component was analyzed by explicit finite element method, and coefficient of restitution and collision detection time along contact part of side collision was drawn by analyzing the results. Analysis result acquired through the law of conservation momentum by applying finally-computed coefficient of restitution and crash detection time compared to collision result of actual vehicle. As a result, the reliability of analysis was higher than the existing analysis method were acquired when applying the drawn initial input value that used finite element method analysis model.

The Study on the Development of Environmental-friendly Surface Material Using Condensed Tannin (축합형 탄닌을 이용한 친환경 건축마감재 개발에 관한 연구)

  • Jo, Jae-Min;Park, Moon-Soo;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.199-205
    • /
    • 2010
  • Medium-density fiberboard (MDF) is widely used as an indoor building materials. However, formaldehyde resins, commonly used to bind MDF together, emit formaldehyde and other volatile organic compounds that cause health risk at sufficient concentration. In this study, condensed tannin having formaldehyde absorption ability was used to solve the problem of formaldehyde emission generated from surface material. The synthesis of melamine-formaldehyde resin and reaction of melamine-formaldehyde and condensed tannin were analyzed by FT-IR spectrum. Also surface properties, such as shear force, impact strength, tape adhesion, pencil hardness and gloss retention were measured. Free formaldehyde analysis was performed to analyze remaining unreacted formaldehyde. According to the results, the optimum shear force and impact strength could be obtained by 10 wt.% usage of condensed tannin. In cases of pencil hardness and gloss retention, the optimum properties could be obtained at 20 wt.% of condensed tannin. The amounts of formaldehyde emission of surface material containing 20 wt.% of condensed tannin was 59 ${\mu}g/m^2{\cdot}h$. The amounts of formaldehyde emission could be reduced 3 times by using 20 wt.% of condensed tannin.

Stability of Nano-emulsions prepared upon Change of Composition (조성변화에 따라 제조된 나노에멀젼의 안정성)

  • Cho, Wan Goo;Kim, Eun Hee;Jeon, Bong-Ju;Cha, Young-Kweon;Park, Seon-Ki
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • Applications of nano-emulsion for cosmetics as a means of promoting dermal absorption have been the subject of interest. In this study, the stability of nano-emulsions prepared by low-energy emulsification method and varying the composition of raw materials was investigated. By measuring the particle size of the nano-emulsion against time, the stability of nano-emulsions prepared by adding polyol to water phase was increased significantly compared with the nano-emulsions prepared by adding polyol to ethanol phase. The speed of adding ethanol phase to water phase did not have a significant impact on the particle size and stability. Depending on the type of oil, stability was not affected. However, there would be a correlation between the initial size of the nano-emulsion droplets and the molecular weight and polarity of the oil. Stability and the initial particle size according to the type of polyols showed a similar trend except 1,2 hexanediol. The initial droplet size was affected by the concentration of surfactant and oil. However, the initial droplet size did not change against time. Concentration of ethanol was observed to have a significant impact on the initial particle size and stability.

Effects of Vegetation on Pollutants and Carbon Absorption Capacity in LID Facilities (LID시설에서의 오염물질 및 탄소흡수능에 식생이 미치는 영향)

  • Hong, Jin;Kim, Yuhyeon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.24 no.2
    • /
    • pp.115-122
    • /
    • 2022
  • As the impermeable area of soil increases due to urbanization, the water circulation system of the city is deteriorating. The existing guidelines for low impact development (LID) facilities installed to solve these water problems or in previous studies, engineering aspects are more prominent than landscaping aspects. This study attempted to present an engineering and landscaping model for reducing pollutants by identifying the effects of vegetation on rainfall outflows and pollutant reduction in bioretention and the economic aspects of planting. Based on the results of artificial rainfall monitoring at Jeonju Seogok Park and the literature on vegetation rainfall runoff and pollutant reduction performance, the best vegetation for reducing pollution compared to cost was Lythrum salicaria L and Salix gracilistyla Miq. was the best vegetation for carbon storage. If you insist to design plants with only these two plantation, there is no choice but to take risks such as biodiversity. Herbaceous plants such as Lythrum salicaria L can be replaced by death of the plants or pests if considered planting various plants. The initial planting cost could expensive, but it is also necessary to mix and plant Salix gracilistyla Miq, which are woody plants that are advantageous in terms of maintenance, according to the surrounding environment and conditions. Based on the conclusions drawn in this study, it can be a reference material when considering the reduction of pollution by species and carbon storage of vegetation in LID facilities.

Characterization of fine lightweight aggregates sintered at floating state using by vertical furnace (수직로에서 부유 소성된 경량 세골재의 특성)

  • Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.258-263
    • /
    • 2008
  • The fine aggregates of below 2 mm size was fabricated using by the vertical furnace in which the aggregates could be sintered at floating state and its physical properties were analyzed. The liquid formed at the surface of specimens sintered at $1200{\sim}l300^{\circ}C$ induced a gas in core to expand so the denser shell and porous core could be produced. The C series specimen fabricated by crushing an extruded body had an irregular shape and sharp edges but those became spheroidized by bloating due to gas expansion inside. The fine aggregates fabricated in this study was as light as floating in the water and had an apparent density of $0.68{\sim}1.08$. The absorption rate was proportioned to a porosity showing that the pores in core was not closed completely. The properties of fine aggregates fabricated in vertical furnace were similar with those of in an electric muffle furnace but the sticking-together phenomenon by surface fusion was not occurred in the vertical furnace. The aggregates fabricated in this study had a little lower impact resistance than that of natural aggregate but satisfied the unit volume weight standard specified in KS.

Cryogenic Mechanical Characteristics of Laminated Plywood for LNG Carrier Insulation System (LNG운반선 방열시스템에 적용되는 적층형 플라이우드의 극저온 기계적 특성 분석)

  • Kim, Jeong-Hyeon;Park, Doo-Hwan;Choi, Sung-Woong;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.241-247
    • /
    • 2017
  • Plywood, which is created by bonding an odd number of thin veneers perpendicular to the grain orientation of an adjacent layer, was developed to supplement the weak points such as contraction and expansion of conventional wood materials. With structural merits such as strength, durability, and good absorption against impact loads, plywood has been adopted as a structural material in the insulation system of a membrane type liquefied natural gas (LNG) carrier. In the present study, as an attempt to resolve recent failure problems with plywood in an LNG insulation system, conventional PF (phenolic-formaldehyde) resin plywood and its alternative MUF (melamine-urea-formaldehyde) resin bonded plywood were investigated by performing material bending tests at ambient ($20^{\circ}C$) and cryogenic ($-163^{\circ}C$) temperatures to understand the resin and grain effects on the mechanical behavior of the plywood. In addition, the failure characteristics of the plywood were investigated with regard to the grain orientation and testing temperature.

Analyses of the OMI Cloud Retrieval Data and Evaluation of Its Impact on Ozone Retrieval (OMI 구름 측정 자료들의 비교 분석과 그에 따른 오존 측정에 미치는 영향 평가)

  • Choi, Suhwan;Bak, Juseon;Kim, JaeHwan;Baek, KangHyun
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.117-127
    • /
    • 2015
  • The presences of clouds significantly influence the accuracy of ozone retrievals from satellite measurements. This study focuses on the influence of clouds on Ozone Monitoring instrument (OMI) ozone profile retrieval based on an optimal estimation. There are two operational OMI cloud products; OMCLDO2, based on absorption in $O_2-O_2$ at 477 nm, and OMCLDRR, based on filling in Fraunhofer lines by rotational Raman scattering (RRS) at 350 nm. Firstly, we characterize differences between $O_2-O_2$ and RRS effective cloud pressures using MODIS cloud optical thickness (COT), and then compare ozone profile retrievals with different cloud input data. $O_2-O_2$ cloud pressures are significantly smaller than RRS by ~200 hPa in thin clouds, which corresponds to either low COT or cloud fraction (CF). On the other hand, the effect of Optical centroid pressure (OCP) on ozone retrievals becomes significant at high CF. Tropospheric ozone retrievals could differ by up to ${\pm}10$ DU with the different cloud inputs. The layer column ozone below 300 hPa shows the cloud-induced ozone retrieval error of more than 20%. Finally, OMI total ozone is validated with respect to Brewer ground-based total ozone. A better agreement is observed when $O_2-O_2$ cloud data are used in OMI ozone profile retrieval algorithm. This is distinctly observed at low OCP and high CF.

Effects of Substituting B2O3 for P2O5 on the Structure and Properties of P2O5-SnO2 Glass Systems (P2O5-SnO2계 유리에서 P2O5를 B2O3로 치환첨가 시 구조와 물성에 미치는 영향)

  • Choi, Byung-Hyun;Ji, Mi-Jung;An, Yong-Tae;Ko, Young-Soo;Lee, Young-Hun
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.459-463
    • /
    • 2008
  • $P_2O_5-SnO_2$ system $0.5SnO_2-xP_2O_5-(0.5-x)B_2O_3$(x=0.1, 0.2, 0.3, 0.4, 0.5) glasses have been prepared for Pb-free low temperature glass frit. A investigation about the effect of $B_2O_3$ substitution on properties of $P_2O_5$ glasses, including glass structure properties, thermal properties, and mechanical properties was presented. Substance that is responsible for in moisture absorption existing circumstances supposes by phosphate, and excess moisture tolerance that state funeral's structure is improved breaking does not affect in state funeral bond that only most single bond remains, and can know that does not suffer big impact in boric oxide anomaly present state. This phenomenon estimates that connect with structure change. It is thought according to link this result the phosphoric acid happened structural change. $B_2O_3$ displacement quantity 0.3 mole put out $BO_4$ structures, but above 0.3 mole it changed with the case $BO_3$ structure which it displaces.