• Title/Summary/Keyword: IMPACT ABSORPTION

Search Result 532, Processing Time 0.031 seconds

Strength Evaluation of CFRP Hat-shaped Sectional Members Due to Variation of Collapse Conditions Under Hygrothermal Environment (고온.고습 환경하에서의 압궤조건 변화에 따른 CFRP 모자형 단면부재의 강도평가)

  • Yang, Yong-Jun;Yang, In-Young;Sim, Jae-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.7-14
    • /
    • 2012
  • CFRP composite material has the superior specific strength and rigidity compared to metallic materials, and is widely adopted in the various fields. However, CFRP composite material has the weakness in hygrothermal and crash environment. Especially, moisture ingress into composite material under hygrothermal environment can change molecule arrangement and chemical properties. In addition, interface characteristics and material component properties can be degraded. A collapse experiment has been made to research the differences of absorbed energy and deformation mode between absorbed specimens of moisture and non-moisture. As a result of this study, the effect of moisture absorption and impact loads of about 30~50% reduction in strength are shown.

Axiomatic Approach for desing Appraisement and Development DVD (II) (DVD 설계평가 및 개선을 위한 공리적 접근 (II))

  • Moon, Yong-Rak;Cha, Sung-Woon;Heo, Bo-Seog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.82-88
    • /
    • 1999
  • In order to execute the major role as the high density large capacity data storage device, which is one of the major characteristics of DVD(Digital Versatile Disk), there must be a method to effectively absorb the external impact or internal vibration. The DVD which has been developed until now tries to control two different types of vibrations, using only one absorber. But this goes against the independence Axiom of Axiomatic Approach which makes the design to be coupled. And in fat most of the malfunctions occurring during DVD data input/output is due to impact or vibration. Therefore in this paper, the vibration absorption system and operation reliability of DVD will be evaluated with the Axiomatic Approach and plans and feasibility to design an improved vibration absorption system will be provided also based on the Axiomatic Approach.

  • PDF

A Study on the Low Speed Impact Response and Frictional Characteristics of Shear Thickening Fluid Impregnated Kevlar Fabrics (전단농화유체를 함침한 케블라 직물의 저속충격 거동 및 마찰특성 연구)

  • Lee, Bok-Won;Lee, Song-Hyun;Kim, Chun-Gon;Yoon, Byung-Il;Paik, Jong-Gyu
    • Composites Research
    • /
    • v.21 no.2
    • /
    • pp.15-24
    • /
    • 2008
  • In this study, shear thickening fluid (STF) filled with rigid nano silica particles was impregnated in plain woven Kevlar fabrics to improve the impact resistance performance. The nano silica particles with an average diameter of 100nm, 300nm, and 500nm were used to make shear thickening fluid to estimate the effect of particle size on the impact behavior of STF impregnated Kevlar fabrics. The yam pull-out and frictional tests were conducted to estimate the effect of impregnated STF on the frictional characteristics. The test results showed that the friction forces were dramatically increased at the STF onset shear strain rates that were measured in preliminary rheology tests. The low speed impact tests were performed using the drop test machine. The results showed that the impregnated STF improved the impact resistance performance of the Kevlar fabrics in terms of the impact energy absorption and the deformation. It has been shown through tests that the impregnated STF affects the interfacial friction which contributes to improve the energy absorption in the Kevlar fabrics. Especially, the impregnation of the STF with the smaller particle size into the Kevlar fabrics showed the better performance in impact energy absorption.

Effect of Austempering Temperature on the Fracture Characteristics in Austempered Ductile Cast Iron (오스템퍼드 구상흑연주철의 파괴특성에 미치는 오스템퍼링 온도의 영향에 관한 연구)

  • Park, Jun-Hoon;Gang, Chang-Yong;Kim, Chang-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.15 no.2
    • /
    • pp.146-155
    • /
    • 1995
  • This study was performed to investigate the effect of austempering temperature on the mechanical properties and fracture characteristics of the ductile cast iron with Cu, Mo and Cu, Mo, Ni. The results obtained from this study are summarized as follows; Microstructures of Cu-Mo and Cu-Mo-Ni ductile cast iron by austempering were obtained low bainite with some martensite at $250^{\circ}C$, mixture structure of upper and low bainite obtained at $300^{\circ}C$ and upper bainite obtained at $350^{\circ}C$. Tensile, impact and fracture toughness properties were remarkably controlled by retained austenite. With increasing austempering temperature, tensile and yield strength, hardness decreased, while the elongation and impact absorption energy, fracture toughness increased. With adding Ni, tensile and yield strength increased and elongation, facture toughness and impact absorption energy decreased. Retained austenite increased with increasing austempering temperature and the fracture surface were shown mixture structure of fibrous and dimple.

  • PDF

Dynamic tensile behavior of SIFRCCs at high strain rates

  • Kim, Seungwon;Park, Cheolwoo;Kim, Dong Joo
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.275-283
    • /
    • 2020
  • Reinforced concrete (RC) does not provide sufficient resistance against impacts and blast loads, and the brittle structure of RC fails to protect against fractures due to the lack of shock absorption. Investigations on improving its resistance against explosion and impact have been actively conducted on high-performance fiber-reinforced cementitious composites (HPFRCCs), such as fiber-reinforced concrete and ultra-high-performance concrete. For these HPFRCCs, however, tensile strength and toughness are still significantly lower compared to compressive strength due to their limited fiber volume fraction. Therefore, in this study, the tensile behavior of slurry-infiltrated fiber-reinforced cementitious composites (SIFRCCs), which can accommodate a large number of steel fibers, was analyzed under static and dynamic loading to improve the shortcomings of RC and to enhance its explosion and impact resistance. The fiber volume fractions of SIFRCCs were set to 4%, 5%, and 6%, and three strain rate levels (maximum strain rate: 250 s-1) were applied. As a result, the tensile strength exceeded 15 MPa under static load, and the dynamic tensile strength reached a maximum of 40 MPa. In addition, tensile characteristics, such as tensile strength, deformation capacity, and energy absorption capacity, were improved as the fiber volume fraction and strain rate increased.

FRONTAL IMPACT FINITE ELEMENT MODELING TO DEVELOP FRP ENERGY ABSORBING POLE STRUCTURE

  • Elmarakbi, A.M.;Sennah, K.M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.555-564
    • /
    • 2006
  • The aim of this paper is to contribute to the efficient design of traffic light poles involved in vehicle frontal collisions by developing a computer-based, finite-element model capable of capturing the impact characteristics. This is achieved by using the available non-linear dynamic analysis software "LS-DYNA3D", which can accurately predict the dynamic response of both the vehicle and the traffic light pole. The fiber reinforced polymer(FRP) as a new pole's material is proposed in this paper to increase energy absorption capabilities in the case of a traffic pole involved in a vehicle head-on collision. Numerical analyses are conducted to evaluate the effects of key parameters on the response of the pole embedded in soil when impacted by vehicles, including: soil type(clay and sand) and pole material type(FRP and steel). It is demonstrated from the numerical analysis that the FRP pole-soil system has favorable advantages over steel poles, where the FRP pole absorbed vehicle impact energy in a smoother behavior, which leads to smoother acceleration pulse and less deformation of the vehicle than those encountered with steel poles. Also, it was observed that clayey soil brings a slightly more resistance than sandy soil which helps reducing pole movement at ground level. Finally, FRP pole system provides more energy absorbing leading to protection during minor impacts and under service loading, and remain flexible enough to avoid influencing vehicle occupants, thus reducing fatalities and injuries resulting from the crash.

Crash Analysis of the ULSAB-AVC Model with Considering Forming Effects (박판성형가공을 고려한 자동차 충돌해석)

  • Huh, H.;Yoon, J.H.;Bao, Y.D.;Kim, S.H.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.556-561
    • /
    • 2006
  • Most of auto-body members are composed of stamping parts. These parts have the non-uniform thickness and plastic work hardening distribution during the forming process. This paper is concerned with the side impact analysis of the ULSAB-AVC model according to the US-SINCAP in order to compare the crashworthiness between the model with and without considering the forming effect. The forming effect is ca]ciliated by one-step forming analysis for several members. The crashworthiness is investigated by comparing the deformed shape of the cabin room the energy absorption characteristics and the intrusion velocity of a car. The result of the crash analysis demonstrates that the crash mode, the load-carrying capacity and energy absorption can be affected by the forming effect. It is noted that the design of an autobody should be carried out considering the forming effect for accurate assessment of crashworthiness.

Low-velocity Impact Characterization of Laminated Composite Materials (복합재료의 저속충격 특성)

  • Han, Ji-Won
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.34-37
    • /
    • 2008
  • The composite materials are widely used in the many applications of industry as well as aerospace field because of their high specific stiffness and strength which benefits the material and provides potential energy savings. However, composite materials also have a low property about external applied impact. In this paper, impact tests were conducted on different sample types(glass, carbon and kevlar composite) to obtain information such as absorbed energy and composite deformation using an instrumented impact test machine (DYNATUP 8250). 3 type samples were compared to experimental results. The data from impact test provided valuable information between the different type samples by wet lay up. This paper shows results of that kevlar composite has larger absorption energy and deformation than others.